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Annex 1 Possible FADN variables to assess the CAP’s contribution 
to sustainable productivity
Annex 1 lists, for each possible FADN (Farm Accountancy Data Network) variable, its definition and the code or formula with which it is associated.

[A] Information on agricultural outputs and inputs

Variable Definition Formula/Details

Y 
Output

Total output (euro) SE131

Farm net value dded (euro) SE415

Crop Output (euro) SE135

Livestock output (euro) SE206

Other output (euro) SE256

K 
Capital

Fixed capital without land value (euro) SE441 − ALNDAGR_CV_X

Total assets (euro) SE436

Livestock Total number of livestock units SE080

L 
Land

Land value (euro) Value of the rented land (see below) + ALNDAGR_CV_X

UAA (ha) SE025

N 
Labour

Total full-time equivalent labour input (hours worked annually) SE011 

M 
Intermediate 
inputs

Materials variable costs (euro) SE281 + SE336

Total specific costs (euro) SE281

Total farming overheads (euro) SE336

[B] Information needed to estimate the value of the rented land

Variable Definition Formula/Details

Fixed capital on UAA owned Value of fixed assets per ha of UAA owned (euro) Value of fixed assets / UAA owned (SE025-SE030)

Land rent Rent per ha of rented UAA (euro) Rent paid SE375 / Rented UAA (SE030)

Rate of return of rent − Farm 
level = RoRR − Farm level

Rate of return of rent at farm level Rent_UAA / Fixed capital on UAA owned

Rate of return of rent – 
Aggregated

Aggregated rate of return of rent for NUTS2 Median of RoRR − Farm level

UAA rented Rented UAA (ha) SE030

Value of the rented land Value of the rented land (euro) Rent paid SE375 / Rate of return of rent − Aggregated
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[C] Information on environmental aspects

1 All details for the FSDN variables can be found in Annex VIII of Commission Implementing Regulation (EU) 2024/2746 of 25 October 2024 laying down rules for the application of Council Regulation 
(EC) No 1217/2009 setting up the Farm Sustainability Data Network and repealing Commission Implementing Regulation (EU) 2015/220. https://eur-lex.europa.eu/eli/reg_impl/2024/2746/
oj#anx_VIII.

Variable Definition Formula/Details

N2 Fertiliser. Quantity of N in mineral fertilisers used SE296

P2O5 Fertiliser. Quantity of P2O5 in mineral fertilisers used SE297

K2O Fertiliser. Quantity of K2O in mineral fertilisers used SE298

Crop_prot Crop protection products costs (euro) SE300

Energy Energy costs (euro) SE345

Fert Fertiliser costs (euro) SE295

Water_Value Water value (euro) H_FO_5040_V

Ren_energy_Sales Production of renewable energy − Sales value (euro) L_SA_2030_V

IRR_UAA UAA under irrigation (ha) IRRAA

 Farming practices FSDN 1

Landscape features FSDN

 Soil management FSDN

 Nutrient use and management FSDN

 Carbon farming FSDN

 Water use and management FSDN

 Antimicrobial use FSDN

 Plant protection use FSDN

 Animal welfare FSDN

 Biodiversity FSDN

 Certification schemes FSDN

 Energy consumption and energy production FSDN

 Food loss on primary production level FSDN

 Waste management FSDN

https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
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[D] Information on social aspects

Variable Definition Formula/Details

N_AWU Total labour input in AWU SE010

N Total labour input in hours SE011

N_Unp_AWU Unpaid labour input in AWU SE015

N_Unp Unpaid labour input in hours SE016

N_Pay_AWU Paid labour input in AWU SE020

N_Pay Paid labour input in hours SE021

 Gender balance FSDN

 Share of off-farm income FSDN

 Education FSDN

Training FSDN

Safety FSDN

 Social inclusion FSDN

 Infrastructure and essential services FSDN

 Generation renewal FSDN

[E] Information on CAP interventions

Variable Definition Formula/Details

CDP Coupled direct payments (euro) SE610 + SE615

DDP Direct decoupled payments (euro) SE630

RDPa Rural Development Payments excluding investment (euro) SE624 − SE406

AES Rural development payments for agri-environmental 
schemes (euro)

SE621

LFA Rural development payments for less favourable areas (euro) SE622

RDPOther Other annual rural development payments (euro) RDPa − AES − LFA

INVEST Rural development subsidies on investments (euro) SE406

https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
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[F] Other information that can be used as control variables

Variable Definition Formula/Details

Economic 
size

Total economic size in EUR SIZEUR

Year of birth Year of birth of holder-manager C_UR_10_B

UAA_OWN UAA owned (ha) SE025 − SE030

Type of 
ownership

1 = family farm; 2 = partnership; 3 = company with profit objective;  
4 = company with non-profit objective

A_CL_110_C

Type of 
farming

Type of farming from FADN classification TF14

Region NUTS3 region where the farm is located  A_LO_40_N

 Innovation and digitalisation FSDN

NUTS 2 NUTS NUTS2 A_LO_40_N2

NUTS 3 NUTS NUTS3 A_LO_40_N

ORGANIC Organic farming code A_CL_140_C

IRR: TYP Irrigation system type A_OT_210_C

LFA_Code Less-favoured area code A_CL_160_C

NAT_2’K_
Coce

Natura 2000 area share A_CL_190_C

Altitude 
Code

Altitude code A_CL_170_C

EC_SIZE_
Code

Economic size class (6 classes) SIZ6

ToF_14 Type of farming (14 groups) TF14

ToF_8 Type of farming (8 groups) TF8

PDO Protected designation of origin (PDO)/Protected geographical indication (PGI) Code A_CL_150_C

Prec Precipitation From Copernicus 
or JRC AGRI4CAST

Temp Temperature From Copernicus 
or JRC AGRI4CAST

Humidity Humidity From Copernicus 
or JRC AGRI4CAST

GDD Growing degree day From Copernicus 
or JRC AGRI4CAST

https://eur-lex.europa.eu/eli/reg_impl/2024/2746/oj#anx_VIII
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Annex 2 Further details on partial productivity

2 Murray, A., Partial versus Total Factor Productivity Measures: An Assessment of their Strengths and Weaknesses, International Productivity Monitor, Centre for the Study of Living Standards, 
vol. 31, 2016, pp. 113-126. https://ideas.repec.org/a/sls/ipmsls/v31y20168.html; and Murray, A., Sharpe, A., Partial versus Total Factor Productivity: Assessing Resource Use in Natural Resource 
Industries in Canada, CSLS Research Reports 2016-20, Centre for the Study of Living Standards, 2016. https://ideas.repec.org/p/sls/resrep/1620.html.
3 Ball, V.E., Output, Input, and Productivity Measurement in U.S. Agriculture 1948–79, American Journal of Agricultural Economics, Vol. 67, No 3, August 1985, pp. 475-486. https://doi.
org/10.2307/1241066.

Annex 2 complements Chapter 4.2 of the guidelines on partial 
indicators. It offers a list of the most common indexes of partial 
productivity and the rationale for using them. It also lists the 
different levels of analysis and explains the results of these indexes. 
Finally, it lists the advantages and disadvantages of using partial 
productivity indicators.

Description

Partial productivity (PP) measures are specific indicators that 
relate the output of an economic system to one of the inputs used 
in producing that output.

Compared with total factor productivity, which consider multiple 
inputs simultaneously, partial productivity describes farm’s 
productivity along a specific dimension 2.

In the formula below, the specific input is generally land, labour 
or non-land capital (but other more disaggregated inputs can be 
used, e.g. fertilisers). The general formula for partial productivity 
is given by:

Partial productivity =  Total Output
Specific input

The following indexes are commonly used in the literature:

Labour Productivity =  Total Output
Total Labour

Labour Productivity (yield) =  Total Output
Total land

Capital Productivity =  Total Output
Total Capital

Material Productivity =  Total Output
Total Material used

By concentrating on individual inputs, partial productivity measures 
allow for a detailed assessment of the efficiency of resource 
utilisation in agriculture. This approach is useful for identifying 
specific areas of improvement, implementing targeted policies 
and evaluating the impact of agricultural practices on productivity 
referring to specific inputs.

For instance, by measuring the productivity of land or labour in 
agricultural production, policymakers can identify inefficiencies, 

promote sustainable practices and enhance productivity in the 
sector. Moreover, partial productivity measures enable policymakers 
to tailor interventions to address specific challenges or opportunities 
within the agricultural sector e.g. by assessing the productivity 
of fertiliser use, policymakers can develop strategies to promote 
efficient nutrient management, reduce negative environmental 
externalities and improve agricultural sustainability in the EU with 
respect to fertiliser use. Additionally, these measures facilitate the 
comparison of different inputs and their contributions to output as 
they convert inputs and outputs into comparable ratios, allowing for 
evidence-based decision-making and optimising resource allocation 
in agriculture 3.

Evaluating the impact of CAP interventions on partial productivity 
can also be useful. For example, there may be interventions to 
stimulate investments in more efficient irrigation systems and their 
impact on water partial productivity can be evaluated.

Data sources and requirements

In the context of agricultural policy, PP can be assessed at the levels 
of individual farms, regions or nations.

Individual farm level: at the individual farm level, FADN or other 
bookkeeping datasets provide detailed data that enables the 
estimation of PP for various farm types (it is possible to evaluate the 
commonly utilised inputs such as labour, land, capital, materials and 
other inputs). The FADN allows policymakers to analyse productivity 
differences across different types of farming, altimetric regions, 
geographical regions and countries. FADN data can also allow for 
the comparison of PP between farms operated by younger and 
older farmers, men or women, or other specific farm characteristic 
groups. It also facilitates comparisons over years offering insights 
into trends and the effectiveness of agricultural policies at the micro 
level.

Regional/national level: on a larger scale, PP can be evaluated 
using aggregated data from sources such as Eurostat, national 
statistical agencies and international organisations like the 
Food and Agriculture Organization (FAO) and the Organisation for 
Economic Co-operation and Development (OECD).

How to interpret the results

 › Efficiency assessment: a higher PP value indicates a more 
efficient use of the input in generating output. For example, 
higher labour productivity (output per hour worked) suggests 
that labour is used more efficiently.

 › Comparative analysis: PP can be used to compare the produc-
tivity of the same input across different periods, types of farms 
or geographical locations.

https://ideas.repec.org/a/sls/ipmsls/v31y20168.html
https://ideas.repec.org/p/sls/resrep/1620.html
https://doi.org/10.2307/1241066
https://doi.org/10.2307/1241066
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Advantages and disadvantages

Table 1. Pros and cons of partial productivity indicators in comparison with other methods

4 Fox, K.J., Efficiency at Different Levels of Aggregation: Public vs. Private Sector Firms, Economics Letters, Vol. 65, No 2, November 1999, pp. 173-176. https://doi.org/10.1016/S0165-1765(99)00147-0; 
Karagiannis, G., More on the Fox Paradox, Economics Letters, Vol. 116, No 3, September 2012, pp. 333-334. https://doi.org/10.1016/j.econlet.2012.04.002; and Mosnier, C., Benoit, M., Minviel, J.J., and 
Veysset, P., Does Mixing Livestock Farming Enterprises Improve Farm and Product Sustainability?, International Journal of Agricultural Sustainability, Vol. 20, No 3, May 4, 2022, pp. 312-326. 
https://doi.org/10.1080/14735903.2021.1932150.

Pros Cons

Simplicity and specificity

Partial productivity measures are straightforward as they 
relate output to a single input. This simplicity makes them easy 
to calculate and understand.

It is particularly useful for quick assessments and for analyses 
specifically focused on one type of input.

Partiality

Partial productivity measures productivity by considering 
only one input at a time, which can misrepresent farm or 
sector performance.

It does not account for interactions (e.g. substitutions) 
between different inputs.

Direct measurement

Partial productivity can be directly calculated from single 
data sources such as farm surveys. It does not require 
complex information about prices, other inputs or advanced 
statistical methods.

Unit differences

Different inputs are often measured in different units, making 
direct comparisons challenging. For example, comparing 
milk per hectare (land productivity) with milk per cow (animal 
productivity) involves different units and contexts, complicating 
the assessment of which input contributes more to overall 
productivity.

Fox’s paradox

Partial productivity is prone to Fox’s paradox. The overall 
performance of a farm may depend on the share of its most 
or least efficient enterprise; a multi-product farm may produce 
each product more efficiently than another farm, but when 
all products are considered together, it may no longer be 
the most efficient 4.

Case of constant returns to scale

The use of partial productivity is limited to cases where constant 
returns to scale are feasible. Constant returns to scale imply 
proportional changes in inputs and outputs. This assumption 
can represent a strong limitation in the use of this indicator.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)

https://doi.org/10.1016/S0165-1765(99)00147-0
https://doi.org/10.1016/j.econlet.2012.04.002
https://doi.org/10.1080/14735903.2021.1932150
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Annex 3 Further details on environmental and social indicators

5 Direct emissions are those happening within the farm boundary e.g. fossil fuels used on the farm, enteric fermentation and soil denitrification. Indirect emissions are associated with the 
manufacturing of agricultural inputs or some processing and marketing occurring outside the boundary of the farm, e.g. GHG emissions from producing mineral fertilisers.
6 The half-life, indicates the time required to reduce the concentration by 50% from any concentration point in time, see: https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/
guidance-calculate-representative-half-life-values. Accessed 28 August 2024.
7 Henderson, B., Lankoski, J., Flynn, E., Sykes, A., Payen, F., MacLeod, M., Soil Carbon Sequestration by Agriculture: Policy Options, OECD Publishing, number 174, 2022. https://doi.org/10.1787/63ef3841-en.
8 FAO and ITPS, Global soil organic carbon map (gsocmap) technical report, Food and Agriculture Organization of the United Nations, Rome, 2018.
9 European Commission, Directorate-General for Research and Innovation, Veerman, C., Pinto Correia, T., Bastioli, C. et al., Caring for soil is caring for life – Ensure 75% of soils are healthy by 
2030 for food, people, nature and climate – Report of the Mission board for Soil health and food, Publications Office, 2020. https://data.europa.eu/doi/10.2777/821504.

Annex 3 complements Chapter 4.2 of the guidelines on partial indicators by describing the possible environmental and social indicators that 
can be used to measure sustainable productivity. Specific focus is given to the resilience capacity indicators, including their definition and 
where they can be applied as well as their shortcomings. Real examples of environmental and social variables in the national databases of 
the Netherlands and Ireland illustrate how they can be used in practice to address gaps in the FADN database.

3.1. Environmental indicators of agriculture
Defining environmental indicators that measure the environmental 
impacts of agriculture-related to an input can be done by classifying 
the environmental impacts of agricultural activities into a wide range 
of interrelated categories.

 › Nutrient flows, namely phosphorus (P), nitrogen (N) and 
potassium (K). While these nutrients are essential to promote 
food production, their excessive use has caused several 
environmental and health problems in relation to water quality. 
For instance, nitrogen surpluses have created eutrophication 
problems, and potassium surpluses contribute to soil erosion. 
The three indicators of this first category are the surpluses of 
nitrogen, phosphorus and potassium.

 › GHG emissions, namely carbon dioxide (CO2), methane (CH4) 
and nitrous oxide (N2O). The primary source of CO2 emissions 
is the use of fossil fuel energy, CH4 emissions are mainly 
associated with enteric fermentation in ruminant animals and 
manure management, and N2O emissions are produced by 
soil denitrification. The three indicators in this category are 
simply the amount of CO2, CH4 and N2O emissions. More detailed 
indicators can be defined by distinguishing direct and indirect 
emissions 5, especially CO2 emissions.

 › Plant protection products, including pesticides. Pesticide use 
indicators have mainly focused on the volume or intensity 
of applications (i.e. quantity of active ingredients (QA) and 
the treatment frequency index (TFI), neglecting all the risks 
associated with their use. Following the example of the Danish 
case, three risk-adjusted indicators are suggested – pesticide 
load (PL), which corresponds to human health, ecotoxicology 
and environmental fate. The PL for human health is the sum of 
all health risk score points. The PL for ecotoxicology captures 
the acute toxicity to mammals, birds, fish, daphnia, algae, 
aquatic plants, earthworms and bees, and chronic toxicity to 
fish, daphnia and earthworms. Finally, the PL for environmental 
fate covers the half-life 6 in soil, the bio-concentration factors and 
the SCI-GROW (screening concentration in groundwater) index. 
These three indicators summarise well the impacts of pesticides 
on the environment and humans, as decreasing the amount of 
pesticides can still be related to increased toxicity with the use 
of more efficient but more hazardous active ingredients.

 › Carbon sequestration’s potential beneficial environmental 
impact. Carbon sinks offer one of the most significant 
opportunities for mitigating the agricultural sector’s GHG 
emissions. According to the OECD, about 4% of the annual 
total anthropogenic GHG emissions could be offset by carbon 
sequestration in agricultural soils 7. Several practices can 
improve soil carbon sequestration potential, including no-
tillage or reduced tillage, regenerative agricultural practices 
(e.g. agroforestry and cover crops) and the application of biochar. 
Biochar, produced from organic waste through pyrolysis, not only 
sequesters carbon for long periods of time, but also enhances 
soil health by improving nutrient and water retention, as well as 
increasing soil pH and microbial activity. These enhancements 
facilitate greater nutrient availability and uptake by plants, 
potentially leading to improved crop yields. In parallel, a new 
strategy around negative emission technologies (NETs) has 
been developed to sequester atmospheric CO2 in agricultural 
lands. A potential implication here relates to the fact that soil 
organic carbon is an indicator of soil health and, therefore, vital 
for sustainable food production 8. In the case of the EU, among 
the five missions governing the Horizon Europe research and 
innovation programme for 2021-2027, the transition towards 
healthy soils is stressed to achieve a 75% increase in healthy 
soils by 2030 9. In addition, agricultural policies, e.g. through 
eco-schemes interventions, have an important role to play in the 
uptake of recommended management practices. The indicator 
for this category is the annual carbon flow in agricultural lands.

https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-calculate-representative-half-life-values
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-calculate-representative-half-life-values
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-calculate-representative-half-life-values).
https://doi.org/10.1787/63ef3841-en
https://data.europa.eu/doi/10.2777/821504
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 › Renewable energy production at the farm level. According to the 
Texas Renewable Energy Industries Alliance (TREIA), renewable 
energy is “any energy resource that is naturally regenerated 
over a short time scale and derived directly from the sun (such 
as thermal, photochemical and photoelectric), indirectly from the 
sun (such as wind, hydropower and photosynthetic energy stored 
in biomass) or from other natural movements and mechanisms of 
the environment (such as geothermal and tidal energy). Renewal 
energy does not include energy resources derived from fossil 
fuels, waste products from fossil sources or waste products 
from inorganic sources” 10. These technologies offer great 
opportunities to reduce GHG emissions and strategically alleviate 
the agricultural system’s dependency on non-renewable energy. 
One indicator here could be the megajoules (MJ) of renewable 
energy produced.

10 Roy, N.,K., and Das, A., Prospects of Renewable Energy Sources, in Islam, M., R., Roy, N., K., and Rahman, S., (eds.), Renewable Energy and the Environment, Singapore, Springer Singapore, 2018, 
pp. 1-39. http://dx.doi.org/10.1007/978-981-10-7287-1_1.
11 Yang, H., and Pollitt, M., The Necessity of Distinguishing Weak and Strong Disposability among Undesirable Outputs in DEA: Environmental Performance of Chinese Coal-Fired Power Plants, Energy 
Policy, Vol. 38, No 8, August 2010. https://doi.org/10.1016/j.enpol.2010.03.075.
12 Elmiger, B.N., Finger, R., Ghazoul, J., and Schaub, S., Biodiversity indicators for result-based agri-environmental schemes – Current state and future prospects, Agricultural Systems, 204:103538, 
2023. https://doi.org/10.1016/j.agsy.2022.103538.
13 See more: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cmef_en. Accessed 10 September 2024.
14 Fleming, A., O’Grady, A.P., Stitzlein, C., Ogilvy, S., Mendham, D., and Harrison, M.T., Improving Acceptance of Natural Capital Accounting in Land Use Decision Making: Barriers and Opportunities, 
Ecological Economics, Vol. 200, October 2022. https://doi.org/10.1016/j.ecolecon.2022.107510.
15 Njuki, E., Bravo-Ureta, B.E., and Cabrera, V.E., Climatic Effects and Total Factor Productivity: Econometric Evidence for Wisconsin Dairy Farms, European Review of Agricultural Economics, 
Vol. 47, No 3, June 15, 2020, pp. 1276-1301. https://doi.org/10.1093/erae/jbz046.

 › Biodiversity. Biodiversity is one of the most complex and 
debated agricultural production indicators because it functions 
both as an input and an output. Its measurement is further 
complicated by its diffuse nature and the intricate interactions 
within ecosystems. Despite these challenges, biodiversity is 
commonly defined by properties such as richness, evenness 
and heterogeneity 11. These properties can also encompass 
considerations for endemic or undesirable species. In their review 
of scientific literature, Elmiger et al. 12 categorise biodiversity 
indicators into two groups: biotic indicators, which include all 
living organisms such as plants, birds, insects and mammals, 
and non-biotic indicators, which refer to environmental and 
management conditions. Examples of biodiversity indicators 
include the ‘farmland birds index’, or the percentage of species 
and habitats of community interest related to agriculture with 
stable or increasing trends 13.

The case of natural capital

Apart from the standard inputs used when evaluating agricultural 
production performance (labour, buildings, machinery, fertilisers, 
pesticides, seeds, etc.), agriculture relies on natural resources 
such as soil nutrients, water for irrigation, and the biodiversity of 
pollinators (defined as ‘non-man-made inputs’ in the guidelines). 
They are part of the ecosystem services (ES). Given the importance 
of ES, including them in decision-making is widely accepted. Within 
the framework of productivity assessment, we define ecosystems 
as assets/stocks, hence natural capital, that, combined with the 
traditional inputs, provide a flow of benefits to society. The main 
challenge here is how to assess natural capital. Natural capital 
accounting (NCA) is a systematic approach to valuing natural 
resources, i.e. the natural stocks and the flows of benefits they 
provide. The System for Integrated Environmental and Economic 
Accounting (SEEA) is a widely acknowledged NCA approach for 

incorporating natural capital into macroeconomic analyses 
and informing policy decisions at both national and subnational 
levels 14. NCA can also be conducted at the farm level, including 
indicators, such as soil health (soil organic matter, minerals and 
PH), biodiversity (flora and fauna), and water resources. All these 
indicators are very difficult to obtain so proxies can be used instead. 
For instance, in the case of soil natural capital, the soil biodiversity 
can be proxied by the soil organic carbon.

Along with the natural capital, other ‘exogenous’/local environmental 
conditions play a crucial role in agricultural production. These 
environmental conditions include weather indicators (rain, 
temperature, humidity, growing degree days, etc.), altitude and 
slope. We do not label these variables as natural capital but instead 
as environmental variables essential for assessing agricultural 
productivity 15.

http://dx.doi.org/10.1007/978-981-10-7287-1_1
https://doi.org/10.1016/j.enpol.2010.03.075
https://doi.org/10.1016/j.agsy.2022.103538
https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cmef_en
https://doi.org/10.1016/j.ecolecon.2022.107510
https://doi.org/10.1093/erae/jbz046
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3.2. Social indicators of agriculture

16 Lebacq, T., Baret, P.V., and Stilmant, D., Sustainability Indicators for Livestock Farming. A Review, Agronomy for Sustainable Development, Vol. 33, No 2, April 2013, pp. 311-327. https://doi.
org/10.1007/s13593-012-0121-x; and Robling, H., Abu Hatab, A., Säll, S., and Hansson, H., Measuring Sustainability at Farm Level – A Critical View on Data and Indicators, Environmental and 
Sustainability Indicators, Vol. 18, June 2023. https://doi.org/10.1016/j.indic.2023.100258.

In productivity studies, the social dimension is another salient, but generally overlooked pillar of sustainability, undoubtedly due to its 
subjective and ambiguous characteristics. Social sustainability indicators can be classified into two groups: indicators accounting for internal 
social objectives (i.e. those that relate to the farm-level community), and indicators accounting for external social objectives (i.e. those that 
relate to society as a whole) 16. The next table summarises potential social indicators.

Table 2. Social indicators associated with agricultural activities

General category Sub-category Indicators

Internal social sustainability Human capital and education Education;

Agricultural training of farm managers and employees;

Age structure (e.g. age of farm manager, age of the youngest 
associate);

Succession potential.

Working conditions Working time;

Workload (work intensity and painfulness, physical load, stress);

Workforce: with salaries; family farms/businesses;

Work safety and accidents (number of accidents, working days 
lost because of occupational accidents);

Farm safety plans (e.g. workplace risk assessment);

Gender balance;

Presence of workers with disabilities;

Wages for hired workers in comparison to a reference wage;

Administrative burden (e.g. number of forms to fill, time spent 
on administrative duties).

Quality of life Work-life balance;

Isolation (e.g. farmer lives alone, internet connection, spatial 
accessibility to services – railway/bus station, post office, 
general practitioner, pharmacy, childcare, primary school 
and grocery retailer);

On-farm and off-farm incomes;

Proximity to natural amenities.

https://doi.org/10.1007/s13593-012-0121-x
https://doi.org/10.1007/s13593-012-0121-x
https://doi.org/10.1016/j.indic.2023.100258
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General category Sub-category Indicators

External social sustainability Multifunctionality Ecosystem services;

Employment;

Agricultural landscape (e.g. richness – pastures, meadows, 
crop areas, fallow lands);

Number of farmers;

Regional value-added.

Acceptable agricultural 
practice

GHG emissions;

Nutrient balances;

Animal welfare (e.g. grazing practices, animal appearance, 
risk of mastitis incidence, antibiotic treatments, culling rate, 
veterinary costs, flexible feeding and stall systems, scraper 
and cow mattresses, space adequacy, birth management, 
freedom of movement and stocking density).

Quality of product Milk fat, protein content, and somatic cells in milk production;

Organic farming;

Protected designation of origins;

Other certification schemes;

On-farm food loss;

Pesticides and antibiotics residues in agricultural products.

17 European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, Corporate Social Responsibility, Responsible Business Conduct, and Business & Human 
Rights: Overview of Progress, Publications Office, 2019. https://ec.europa.eu/docsroom/documents/34482.
18 See previous footnote.
19 For more information, see: https://www.sustainalytics.com/. Accessed 10 September 2024.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)

Although widespread in large businesses or manufacturing firms, 
corporate social responsibility (CSR) is another way of weighing 
agricultural impacts on society. The Commission defines CSR as 
“the responsibility of enterprises for their impacts on society” 17. 
This implies that companies ‘should have in place a process to 
integrate social, environmental, ethical, human rights and consumer 
concerns into their business operations and core strategy in close 
collaboration with their stakeholders to maximise the creation of 
shared value for their owners/shareholders and civil society at large 
and to identify, prevent and mitigate possible adverse impacts 18. 

CSR thereby encompasses not only the environmental dimension 
of agricultural production, but also its social dimension. CSR can 
be evaluated using actual volumes of corresponding outputs 
(e.g. volume of GHG emissions) or a scoring system. For instance, 
the rating agency Sustainalytics 19 provides environmental, 
social and corporate governance (ESG) sophisticated scores for 
companies using data from multiple sources such as annual reports, 
CSR reports, CSR websites, press releases, local newspapers or 
relevant websites.

https://ec.europa.eu/docsroom/documents/34482
https://www.sustainalytics.com/
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The case of social capital

20 Woolcock, M., and Narayan, D., Social Capital: Implications for Development Theory, Research, and Policy, The World Bank Research Observer, Vol. 15, No 2, August 1, 2000, pp. 225-249. https://
doi.org/10.1093/wbro/15.2.225.
21 Lin, N., Social Capital: A Theory of Social Structure and Action, 1st ed., Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511815447.
22 Callois, J.-M., and Aubert, F., Towards Indicators of Social Capital for Regional Development Issues: The Case of French Rural Areas, Regional Studies, Vol. 41, No 6, August 2007, pp. 809-821. 
https://doi.org/10.1080/00343400601142720.
23 Ibid.
24 For more information, see: https://eu-cap-network.ec.europa.eu/networking/leader_en.
25 Meuwissen, M.P.M., Feindt, P.H., Spiegel, A., Termeer, C.J.A.M., Mathijs, E., Mey, Y.D., Finger, R., et al., A Framework to Assess the Resilience of Farming Systems, Agricultural Systems, Vol. 176, 
November 2019, p. 102656. https://doi.org/10.1016/j.agsy.2019.102656.
26 Slijper, T., De Mey, Y., Poortvliet, P.M., and Meuwissen, M.P.M., Quantifying the Resilience of European Farms Using FADN, European Review of Agricultural Economics, Vol. 49, No 1, January 
10, 2022, pp. 121-150. https://doi.org/10.1093/erae/jbab042.

Social capital should not be neglected among the immaterial inputs 
that participate directly or indirectly in agricultural production. 
There is no clear-cut definition of social capital. For instance, 
Woolcock and Narayan 20 defined social capital as “the norms and 
networks that enable people to act collectively”, while Lin 21 defined 
it as “resources embedded in a social structure, which are accessed/
mobilised in purposive actions”. Social capital positively impacts 
performance through three channels: transmission of valuable 
information (dense networks allow rapid and reliable transmission of 

relevant information), opportunism problems (social proximity might 
induce loyalty and trust), and collective actions like risk pooling 
or scale economies 22. Social capital can also generate negative 
impacts, for instance, a lack of incentives to seek out new economic 
and commercial opportunities, engage in innovative, risky and best 
performing behaviours and a collusion effect through exclusion. An 
optimal level of social capital will require balancing levels of strong 
(bonding) and weak (bridging) ties. Callois and Aubert 23 suggested 
some classes of indicators to evaluate social capital in rural areas.

Table 3. Indicators of social capital

Class of phenomenon Indicators

Social homogeneity Gini index on income

Trust, loyalty, reciprocity Rate of telephone users not in the directory, charity gifts

Cooperation Average farm size, fiscal integration coefficient

Conservatism Vote for conservative parties

Density of local links Participation in associations, average household size, 
density of bars and sports facilities, share of commuters

Bridging social capital Emigration/immigration indicators, business links, 
electoral turnout, number of subsidies granted

Source: adapted from Callois and Aubert (2007)

Many of the indicators presented in the above table are not 
measured at the farm level, but at a territory level, where local 
differences in production areas are captured.

In conclusion, it is worth discussing the overarching indicator of 
resilience. The concept of resilience highlights the importance 
of effectively managing uncertainty and adapting to dynamic 
environments. Less resilient farms cannot deal with the multitude 
of risks spreading from droughts, climate change and environmental 
degradation, pests and disease outbreaks, changing regulations, 
market volatility, socioeconomic pressures, COVID-19 and the war 
in Ukraine. At the policy level, strengthening the resilience of the EU 
food system has been embedded in the 2020 CAP reform, which aims 
to enhance the resilience of European agriculture through various 
strategies and measures: climate adaptation and mitigation, risk 

management tools, rural development programs (including support 
for young farmers), biodiversity and environmental conservation, 
and community-led local development (CLLD), including the LEADER 
Initiative 24. In addition, the 2023-2027 CAP reform introduced a new 
delivery model, granting more flexibility to Member States to tailor 
interventions to their specific needs while aligning with EU-wide 
objectives, such as eco-schemes, enhanced conditionality and 
social conditionality. Apart from the obvious policy considerations 
in enhancing resilience, the main challenge resides in measuring 
it. Resilience can be defined in three dimensions namely 
robustness, adaptation and transformation 25. A recent study of 
nine European countries 26 suggested some indicators to assess 
the three dimensions of resilience. They suggested the following 
classification.

https://doi.org/10.1093/wbro/15.2.225
https://doi.org/10.1093/wbro/15.2.225
https://doi.org/10.1017/CBO9780511815447
https://doi.org/10.1080/00343400601142720
https://eu-cap-network.ec.europa.eu/networking/leader_en
https://doi.org/10.1016/j.agsy.2019.102656
https://doi.org/10.1093/erae/jbab042
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Table 4. Overview of the resilience capacity indicators

In the table, positive (negative) directions indicate that higher values of an indicator imply higher (lower) levels of resilience capacity. 
Application indicates to what farm types a specific indicator applies. ACP = arable, crop and perennial farms.

Resilience 
capacity

Resilience 
capacity 
indicator 

(indicator name)
Definition Direction Application

Robustness Resistance 
(resistance)

Percentage decrease in profitability + ACP, livestock, 
mixed

Shock (shock) Occurs if profitability decreases 
by at least 30%

− ACP, livestock, 
mixed

Recovery rate after 
year 1 (recovery rate)

Degree of recovery after one year, expressed 
as a percentage of the decrease in profitability

+ ACP, livestock, 
mixed

Adaptation Crop diversity 
(crop diversity)

Change in crop diversity +/− ACP, mixed

Fertiliser, crop 
protection and 
energy costs (FCE )

Percentage change in fertiliser, crop protection 
and energy costs per hectare

+/− ACP, mixed

Irrigation (irrigation) Percentage change in irrigated area +/− ACP, mixed

Labour (labour) Percentage change in annual working units 
(AWU) per hectare

+/− ACP, livestock, 
mixed

Livestock units per 
hectare (LU)

Percentage change in livestock units 
per hectare

+/− Livestock, 
mixed

Feed ratio (feed ratio) Percentage change in the ratio of on-farm 
produced food to total feed costs

+/− Livestock, 
mixed

Transformation Organic (organic) Conversion from conventional 
to organic farming or vice versa

+ ACP, livestock, 
mixed

Farm type 
(farm type)

Change in farm type (TF8 classification) + ACP, livestock, 
mixed

Farm tourism 
(tourism)

Revenue from farm tourism represents 
at least 30% of total revenue

+ ACP, livestock, 
mixed

Source: adapted from Slijper et al. (2022)

Note: TF8 classifies farm types according to the following types: 1 = fieldcrops, 2 = horticulture, 3 = wine, 4 = other permanent crops, 5 = milk, 6 = other grazing livestock, 
7 = granivores, and 8 = mixed
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Although not explicitly mentioned, resilience implies independence 
from off-farm resources, especially non-renewable energy and 
mineral fertilisers. The Ukrainian war has revealed the vulnerability 
of the EU agricultural system to energy price shocks and geopolitical 
threats. This dependency could be analysed by understanding 
farmers’ demand for non-renewable energy-intensive inputs or by 
measuring the efficiency of these inputs. Currently, the FADN can 

27 Note that the indicators provided in FADN are not related to the input yet.
28 This is a partial list of the studies that have described some of these indicators:

• Dolman, M.A., Sonneveld, M.P.W., Mollenhorst, H., and De Boer, I.J.M., Benchmarking the Economic, Environmental and Societal Performance of Dutch Dairy Farms Aiming at Internal Recycling of 
Nutrients, Journal of Cleaner Production, Vol. 73, June 2014, pp. 245-252. https://doi.org/10.1016/j.jclepro.2014.02.043;

• Skevas, T., and Lansink, A.O., Reducing Pesticide Use and Pesticide Impact by Productivity Growth: The Case of Dutch Arable Farming, Journal of Agricultural Economics, Vol. 65, No 1, January 2014, 
pp. 191-211. https://doi.org/10.1111/1477-9552.12037;

• Buckley, C., Wall, D.P., Moran, B., and Murphy, P.N.C., Developing the EU Farm Accountancy Data Network to Derive Indicators around the Sustainable Use of Nitrogen and Phosphorus at Farm Level, 
Nutrient Cycling in Agroecosystems, Vol. 102, No 3, July 2015, pp. 319-333. https://doi.org/10.1007/s10705-015-9702-9;

• Buckley, C., Wall, D.P., Moran, B., O’Neill, S., and Murphy, P.N.C., Farm Gate Level Nitrogen Balance and Use Efficiency Changes Post Implementation of the EU Nitrates Directive, Nutrient Cycling 
in Agroecosystems, Vol. 104, No 1, January 2016, pp. 1-13. https://doi.org/10.1007/s10705-015-9753-y; Ryan, M., Hennessy, T., Buckley, C., Dillon, E.J., Donnellan, T., Hanrahan, K., and Moran, B., 
Developing Farm-Level Sustainability Indicators for Ireland Using the Teagasc National Farm Survey, Irish Journal of Agricultural and Food Research, Vol. 55, No 2, December 1, 2016, pp. 112-125. 
https://doi.org/10.1515/ijafr-2016-0011;

• Dillon, E.J., Hennessy, T., Buckley, C., Donnellan, T., Hanrahan, K., Moran, B., and Ryan, M., Measuring Progress in Agricultural Sustainability to Support Policy-Making, International Journal of 
Agricultural Sustainability, Vol. 14, No 1, January 2, 2016, pp. 31-44. https://doi.org/10.1080/14735903.2015.1012413;

• Lamkowsky, M., Oenema, O., Meuwissen, M.P.M., and Ang, F., Closing Productivity Gaps among Dutch Dairy Farms Can Boost Profit and Reduce Nitrogen Pollution, Environmental Research Letters, 
Vol. 16, No 12, December 1, 2021. DOI 10.1088/1748-9326/ac3286;

• Wang, S., Ang, F., and Lansink, A.O., Mitigating Greenhouse Gas Emissions on Dutch Dairy Farms. An Efficiency Analysis Incorporating the Circularity Principle, Agricultural Economics, 
Vol. 54, No 6, November 2023, pp. 819-837. https://doi.org/10.1111/agec.12804.

provide elements to address this issue. Another related indicator 
is autonomy, which is a multifaceted concept that encompasses 
various dimensions of independence and self-sufficiency within 
the agricultural context. It can be defined in terms of economic 
(e.g. financial independence), operational (e.g. technological self-
sufficiency) and decision-making (e.g. strategic planning) aspects.

3.3. Note on the data available for computing environmental and social indicators
Annex 1 provides a list of environmental and social indicators 27 
that can be found in the FADN database. However, the available 
indicators represent a poor representation of the environmental 
and social dimensions. For instance, regarding natural capital, there 
is no information about the land management practices, not even 
on the existence of hedgerows or buffer strips (such information 
is available in the LPIS (Land Parcel Identification System), but 
this database does not include the economic data necessary for 
a productivity assessment). A poor proxy of soil management can 
be machinery costs, including maintenance, amortisation and 
machinery cooperative or external service expenses. In addition, 
in the FADN, the localisation of farms at the municipality level is 
missing (only NUTS2 location is available), so weather and soil 
information cannot be precisely considered.

In the social dimension, the labour variable is poorly measured 
and expressed in annual working units (AWU). For instance, one 

annual work unit is equivalent to one person working full-time on 
the holding. One person cannot exceed one work unit equivalent, 
even if their actual working time exceeds the norm for the region and 
type of holding. Other indicators include some rural development 
subsidies (e.g. subsidies for young and new farmers and animal 
welfare payments). Succession potential can be proxied by the farm 
asset size and the level of investments. Some previously mentioned 
variables, like concentrate feed and veterinary costs per livestock 
unit and building size (expressed in monetary terms in FADN data) 
per livestock unit, can be used to assess animal welfare.

In the FADN, information on environmental and social indicators is 
poor. Nevertheless, some countries have included in their national 
FADN database some variables associated with the environmental 
and social impacts of agriculture. The table below shows some 
environ mental and social variables present in the national 
databases of the Netherlands and Ireland 28.

https://doi.org/10.1016/j.jclepro.2014.02.043
https://doi.org/10.1111/1477-9552.12037
https://doi.org/10.1007/s10705-015-9702-9
https://doi.org/10.1007/s10705-015-9753-y
https://doi.org/10.1515/ijafr-2016-0011
https://doi.org/10.1080/14735903.2015.1012413
https://iopscience.iop.org/article/10.1088/1748-9326/ac3286
https://doi.org/10.1111/agec.12804
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Table 5. Environmental and social variables collected in the Netherlands and Ireland

Country Dimensions Variables

The Netherlands Environmental related variables Nutrient surpluses (N and P)

Pesticides kilograms of active matter

Pesticides environmental impact points – EIP, for groundwater, 
surface water and soil

Megajoules (MJ) of energy used on the farm (electricity and 
several fuels)

Megajoules (MJ) of energy produced on the farm (solar panels, wind, 
biogas from digestion)

GHG emissions (with Tier-3 computation)

N-emissions (ammonia and other N: N2, NOX)

Water volume (m3) used for irrigation

Animal welfare Daily dose of antibiotics per animal

Hours of grazing

Age of culling/longevity

Ireland Environmental indicators GHG emissions

Nutrient balances

Social sustainability indicators Farmer Physical & Psychological Well-Being (Loneliness and mental 
health, financial pressures, Rural Crime, Access to farm labour)

Social Isolation (Access to essential services to avoid isolation and lack 
of relationship between people, e.g. banks, supermarkets, libraries, etc.)

Succession (Challenges around farm transfer, Attractiveness of farming 
as a career)

Animal Welfare (Poor Animal Welfare as an indicator of poor farmer 
well-being, Animal Comfort, e.g. housing and health, Consumer queries)

Rural policy & development (Resilience and change, Effect of emigration 
on rural regions, Availability of services)

Broadband (Challenging for business and communication)

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)

These are only two examples. There are certainly other national FADN data with environmental and social variables.

As a general note, it should be stressed that the above indicators mainly represent farming practices (or proxies of these) or pedoclimatic 
conditions and not environmental impacts per se. This may be problematic as there is a huge heterogeneity in agricultural practices that is 
not reflected in the proxy indicators, which can also be reflected in the environmental impacts.
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Annex 4 Further details on TFP

29 OECD, Measuring Productivity - OECD Manual: Measurement of Aggregate and Industry-level Productivity Growth, Organisation for Economic Co-operation and Development, 2021. https://www.
oecd-ilibrary.org/industry-and-services/measuring-productivity-oecd-manual_9789264194519-en.
30 Bureau, J. C., & Antón, J., Agricultural Total Factor Productivity and the environment: A guide to emerging best practices in measurement, Organisation for Economic Co-operation and Development, 
2022. https://doi.org/10.1787/6fe2f9e0-en.
31 The European Commission has set up the common monitoring and evaluation framework (CMEF) to assess the performance of the 2014-20 common agricultural policy (CAP) and improve its 
efficiency. The definition of the context indicators is provided in: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cmef_en. Accessed 21-06-2024.
32 Del Gatto, M., Di Liberto, A., and Petraglia, C., MEASURING PRODUCTIVITY, Journal of Economic Surveys, Vol. 25, No 5, December 2011, pp. 952-1008. https://doi.org/10.1111/j.1467-6419.2009.00620.x.
33 Ackerberg, D.A., Timing Assumptions and Efficiency: Empirical Evidence in a Production Function Context, The Journal of Industrial Economics, Vol. 71, No 3, September 2023, pp. 644-674. https://
doi.org/10.1111/joie.12340; and Ackerberg, D.A., Caves, K., and Frazer, G., Identification Properties of Recent Production Function Estimators, Econometrica, Vol. 83, No 6, 2015, pp. 2411-2451. 
https://doi.org/10.3982/ECTA13408.

Annex 4 complements Chapter 4.3 of the guidelines on total 
indicators in relation to TFP. It consists of several parts.

First, Annex 4.1 provides a summary of all possible approaches for 
estimating TFP according to various characteristics and potential 
applications.

Second, Annexes 4.2-4.6 offer details on each of these approaches, 
including a detailed description and why it is useful, technical 
formulas for calculations, data sources and requirements, 
methodological steps and insights on how to read the results. 
Each section concludes with a summary of the advantages and 

disadvantages of the method. Examples from the literature are also 
provided where possible.

Finally, Annex 4.7 covers possible issues and caveats in estimating 
productivity by listing the advantages and disadvantages of 
production functions, considering possible biases and examining 
the case of own labour, land and capital.

Annex 4 is useful for better understanding each approach for 
estimating TFP and identifying what is required to apply it in practice 
(e.g. technical aspects/calculations, data needs and expertise 
required) while taking all possible issues into account.

4.1. Summary of the possible approaches to estimate TFP

4.1.1. Possible approaches

Total factor productivity (TFP) is the ratio of all outputs divided 
by all inputs. Both outputs and inputs are aggregated. TFP can be 
measured by observing farms or firms or by analysing data from 
sectors, regions or countries 29.

Assessing changes in TFP helps explain which inputs (or factors) 
contribute to the growth of production and whether there are gains 
in production that cannot be explained by the growth of inputs. 
Sometimes, the term ‘multifactor-productivity’ is used instead of 
‘total factor productivity’ because, in an empirical analysis, it is 
not possible to account for all factors that may come in different 
qualities for which data does not exist or are only available at 
prohibitive costs.

TFP grows when production grows at a faster rate than the quantity 
of inputs.

The growth rate of production is, therefore, the sum of two growth 
rates: TFP and inputs used 30. TFP is, therefore, also referred to as 
a ‘residual’ – something that contributes to production growth but 

cannot be identified as a specific input or its quality and rate of 
change. TFP grows when farms become more technically efficient 
e.g. by spreading fertiliser carefully on the field (i.e. the technical 
efficiency change is positive) and/or when there is technological 
progress, for example when new methods are employed that 
contribute to lower costs (e.g. variable rate fertilisation, which saves 
fertiliser) or higher yields (e.g. genetically superior crop varieties). 
TFP is a CAP Strategic Plan (CSP) context indicator 31.

TFP, according to the classification of del Gatto et al. 32 and 
Ackerberg et al. 33, can be assessed using approaches that vary 
according to two main characteristics.

1. Deterministic vs stochastic methodologies

2. Methodologies that rely on technological frontiers or not

The table below, adapted from del Gatto et al., and integrated by 
Ackerberg et al., provides a framework for classifying productivity 
measurement approaches used in microeconomic analyses.

https://www.oecd-ilibrary.org/industry-and-services/measuring-productivity-oecd-manual_9789264194519-en
https://www.oecd-ilibrary.org/industry-and-services/measuring-productivity-oecd-manual_9789264194519-en
https://doi.org/10.1787/6fe2f9e0-en
https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cmef_en
https://doi.org/10.1111/j.1467-6419.2009.00620.x
https://doi.org/10.1111/joie.12340
https://doi.org/10.1111/joie.12340
https://doi.org/10.3982/ECTA13408
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Table 6. Available methodologies for TFP estimation

34 According to the classification of del Gatto et al. (2011), Ackerberg et al. (2015) and Ackerberg (2023). This applies to the case of indexes such as the Laspeyres, Paasche, Fisher, and Törnqvist.
35 Blundell, R., and Bond, S., GMM Estimation with Persistent Panel Data: An Application to Production Functions, Econometric Reviews, Vol. 19, No 3, January 2000, pp. 321-340. https://doi.
org/10.1080/07474930008800475.

Deterministic 
methodologies

Stochastic methodologies

Parametric Semi-parametric

Non-frontier Index numbers Dynamic panel data (DPD) Control function estimator 
(CFE)

Frontier
Data envelopment analysis 
(DEA) with and without index 
numbers

Stochastic frontier analysis 
(SFA)

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)

4.1.2. Deterministic vs. stochastic methodologies

Deterministic methodologies

Deterministic methodologies assume that state variables are 
uniquely determined by the coefficients in the model and by the 
sets of previous states of these variables. They perform consistently 
for a given set of parameters and initial conditions, resulting in a 
unique solution.

 › Advantages: simple and easy to implement, often used 
when the focus does not consider exogenous factors.

 › Disadvantages: do not account for random shocks or 
measurement errors.

Stochastic methodologies

Stochastic methodologies incorporate random errors to account 
for variability in output that is not explained by input levels alone.

 › Advantages: suitable for settings with unpredictable drivers, 
providing a more realistic assessment of performance.

 › Disadvantages: require specific hypotheses about the underlying 
functions to model and predict outcomes accurately.

Within stochastic methodologies, it is possible to differentiate 
further between parametric and semi-parametric methods.

 › Parametric methods rely on a predefined mathematical 
relationship between inputs and outputs.

 › Semi-parametric methods blend predefined approaches 
with flexible, non-parametric elements to better capture the 
complexities of production processes.

4.1.3. Non-Frontier vs frontier methods

Non-frontier methods

Non-frontier methods do not explicitly identify the efficiency gap 
between actual and potential output/input.

Index numbers

 › Type: deterministic 34

 › Description: index numbers quantify the ratio of aggregate 
output to aggregate inputs over time. These indices, such as 
the Laspeyres, Paasche, Fisher and Törnqvist, are grounded 
in economic index theory and used to measure productivity 
changes, assuming competitive markets and efficient producer 
behaviour.

 › Applications: these indices are useful for investigating aggregate 
productivity trends over time and decomposing changes into 
price and volume effects.

Dynamic panel data (DPD)

 › Type: stochastic, parametric

 › Description: the dynamic panel approach, developed by Blundell 
& Bond 35, is utilised to analyse panel data by calculating 
productivity as the Solow residual. This method incorporates both 
time dynamics and individual effects, addressing unobserved 
individual heterogeneity and endogeneity issues by employing 
lagged variables as instruments.

 › Applications: DPD models are particularly suitable for real-
world agricultural settings where unpredictable factors can 
significantly impact productivity.

https://doi.org/10.1080/07474930008800475
https://doi.org/10.1080/07474930008800475
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Control function estimator (CFE)

 › Type: stochastic, semi-parametric

 › Description: CFE (or proxy variables method) is a two-step 
econometric approach that uses a proxy variable to represent 
unobserved productivity. Methods introduced by Olley & Pakes 36, 
Levinsohn & Petrin 37, Ackerberg et al. 38 and Wooldridge 39 
construct such proxies using investment and intermediate inputs 
to control for unobserved productivity.

 › Applications: CFE is used to obtain consistent input elasticity 
estimates and address endogeneity issues, providing a more 
accurate and reliable measure of TFP.

Frontier methods

Frontier methods estimate the maximum possible output for given 
inputs (or the minimum possible input for a given output), identifying 
the gap between actual and potential output/input (defined by the 
production frontier) as inefficiency.

Data envelopment analysis (DEA)

 › Type: deterministic, non-parametric

 › Description: DEA is a non-parametric method for estimating 
production frontiers, which empirically measures the productive 
efficiency of DMUs responsible for converting inputs into outputs. 
DEA constructs a piecewise linear surface (or frontier) to envelop 
the data points representing the most efficient units. This frontier 
serves as a benchmark against which the efficiency of all units 
is assessed.

 › Applications: DEA has been used to estimate productivity indices 
like Malmquist or Hicks-Moorsteen, effectively measuring TFP 
through distance functions.

Stochastic frontier analysis (SFA)

 › Type: stochastic, parametric

 › Description: SFA is an econometric methodology employed 
for the measurement of technical efficiency and productivity. 
Unlike DEA, which attributes all deviations from the frontier 
to inefficiencies, SFA distinguishes between random errors 
(statistical noise) and inefficiency. This distinction allows SFA 
to provide more nuanced insights into the sources of inefficiency.

 › Applications: SFA enables the simultaneous estimation of 
efficiency scores and the identification of factors contributing 
to inefficiencies, such as farm-specific characteristics or 
adherence to policy measures like CAP.

36 Olley, G.S., and Pakes, A., The Dynamics of Productivity in the Telecommunications Equipment Industry, Econometrica, Vol. 64, No 6, November 1996. https://doi.org/10.2307/2171831.
37 Levinsohn, J., and Petrin, A., Estimating Production Functions Using Inputs to Control for Unobservables, Review of Economic Studies, Vol. 70, No 2, April 2003, pp. 317-341. https://doi.
org/10.1111/1467-937X.00246.
38 See the full reference for Ackerberg et al. (2007) in footnote 33.
39 Wooldridge, J.M., On Estimating Firm-Level Production Functions Using Proxy Variables to Control for Unobservables, Economics Letters, Vol. 104, No 3, September 2009, pp. 112-114. https://doi.
org/10.1016/j.econlet.2009.04.026.
40 Coelli, T., Lauwers, L., and Van Huylenbroeck, G., Environmental Efficiency Measurement and the Materials Balance Condition, Journal of Productivity Analysis, Vol. 28, No 1, October 1, 
2007, pp. 3-12. https://doi.org/10.1007/s11123-007-0052-8.

4.2. Details on the 
index number approach

Description

An index number is a real number that measures changes in a set 
of related variables. Conceptually, index numbers may be used for 
comparisons over time, space, or both.

Productivity indexes estimating TFP are based on the concept that 
TFP represents the efficiency gains or technological progress in 
production, which allows for increased output without a proportional 
increase in inputs like labour and capital. These indexes aim to 
quantify the ‘extra’ output not explained by the accumulation of 
input factors, thus capturing the effects of improvements in how 
inputs are used. Such improvements could be due to technological 
advancements (i.e. technological progress), better management 
practices (that increase technical efficiency) or other factors that 
enhance productivity.

According to Coelli et al. 40, index numbers are crucial for measuring 
productivity. The primary application of index numbers is in 
quantifying changes in TFP, which necessitates the derivation of 
distinct input and output quantity index numbers, collectively 
referred to as TFP index numbers.

Index numbers are used as a methodological framework for 
comparing output and input levels across different farms to 
measure productivity changes. TFP indices may be utilised in binary 
comparisons, aimed at contrasting two specific periods or cross-
sectional units, or in multilateral scenarios, where the TFP index is 
calculated for several cross-sectional units concurrently.

The following are the most used approaches:

 › Laspeyres index: this index calculates productivity by using base 
year prices to value output and input quantities. It provides a view 
of productivity changes relative to a fixed point in time.

 › Paasche index: unlike the Laspeyres, the Paasche index uses 
current-year prices for its calculations. This makes it responsive 
to recent changes in price and quantity, reflecting more up-to-
date economic conditions.

 › Fisher index: the Fisher index, considered ideal, is the geometric 
mean of the Laspeyres and Paasche indices, combining their 
strengths.

 › Törnqvist index: this index is a flexible form that uses the 
weighted geometric mean of price or quantity ratios, with weights 
reflecting average shares of total expenditure or revenue. It is 
deemed a ‘superlative’ index due to its adaptability to changes 
in price and quantity data over time.

Two additional indexes, the Malmquist productivity index and Färe-
Primont productivity index are computed with the DEA approach and 
are explained below when describing DEA (Section 4.5).

https://doi.org/10.2307/2171831
https://doi.org/10.1111/1467-937X.00246
https://doi.org/10.1111/1467-937X.00246
https://doi.org/10.1016/j.econlet.2009.04.026
https://doi.org/10.1016/j.econlet.2009.04.026
https://doi.org/10.1007/s11123-007-0052-8
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Box 1. Example from literature

Baldoni and Esposti 41 use index numbers to calculate TFP by 
means of a multilateral (transitive) TFP (MTFP) index, following 
the Hick-Moorsteen approach. This approach constructs the 
index as the ratio of a Fisher output quantity index to a Fisher 
input quantity index. The analysis was conducted in Italy 
at the farm level, focusing on individual farms, with data 
covering the period from 2008 to 2015. This method allows for 
a detailed examination of how various farm-specific drivers, 
such as management practices and access to resources, 
influence productivity.

The study found significant variations in agricultural TFP 
across Italian regions. It highlights that productivity spillovers 
are significant but occur over a limited spatial range, 
typically within a radius of 100 kilometres. For example, a 
productivity shock in one region, such as Parma, primarily 
affects neighbouring regions like Reggio Emilia and Modena, 
with the impact diminishing beyond this range. This finding 
underscores the importance of selecting an appropriate 
spatial scale for analysis to accurately capture the dynamics 
of agricultural productivity.

The results suggest that spatial and dynamic drivers, such 
as geographical proximity and technological contiguity, play 
crucial roles in influencing farm productivity. The study’s 
comprehensive assessment underscores the complexity 
of measuring agricultural productivity and the necessity 
of considering these drivers in the analysis. This approach 
provides a robust framework for understanding the regional 
dynamics of agricultural productivity, which can inform more 
effective agricultural and regional development policies.

Conceptually, all index numbers measure changes in the levels of 
a set of variables from a reference period. The reference period is 
denoted as the ‘base period’ (s). The period for which the index is 
calculated is called the ‘current period’ (t).

Let pmj and qmj represent the price and quantity, respectively, of 
the m−th  netput (a term that refers to all outputs and inputs) in 
the M  netputs being considered (m  = 1,2, … ,m) in the j−th 
period (J  = s,t).

Let Ist represent a general index number for the current period, 
t , with s  as the base period. Similarly, let Vst , Pst , and Qst 
represent value, price and quantity index numbers, respectively 42.

41 Baldoni, E., and Esposti, R., Agricultural Productivity in Space: An Econometric Assessment Based on Farm-Level Data, American Journal of Agricultural Economics, Vol. 103, No 4, August 2021, 
pp. 1525-1544. https://doi.org/10.1111/ajae.12155.
42 Without a loss of generality, s  and t  may refer to two farms instead of periods, and quantities may refer to input or output quantities.
43 The use of DPD at regional or national level is discouraged even if it is possible, given the low number of observations that may compromise the robustness of the results.

The value changes from period s to t is given by the ratio of the value 
of products in t  and s , valued at their respective prices:

 
Vst = 

∑M
m=1 pmtqmt

∑M
m=1 pmsqms

The index, Vst, measures the change in the value of the basket of 
quantities of M  netputs from period s  to period t . This formulation 
can be translated as:

Vst = 
ptqt

psqs
 = 

pt

ps
 × 

qt

qs

NOTE: Member States must exercise caution when using index 
numbers, as these measures must satisfy several fundamental 
properties to be reliable. One critical property is transitivity, 
which ensures that the index allows for consistent comparisons 
across multiple points in time and space. This property has posed 
challenges for many decades; for instance, standard index numbers 
like the Fisher index do not satisfy the transitivity requirement. 
Although newer indices like EKS or Färe-Primont meet this criterion, 
they come with trade-offs, such as increased complexity, violation 
of other properties or other restrictive assumptions to guarantee 
transitivity. Therefore, it is essential to recognise that no single 
index can be deemed the best for all contexts; instead, the choice of 
index should align with the specific objectives and data availability 
of the analysis.

Data sources and requirements

Data requirements

 › Choose the appropriate panel data set. Some models are 
usually adopted at the individual farm level as it enables the 
use of samples with sufficient observations 43. In agriculture, 
this often involves data from sources like the FADN for price 
indexes, complemented with Eurostat data, also used to deflate 
monetary values.

 › Ensure the data includes relevant variables such as output, 
labour, capital and other inputs.

Data preparation

 › Check for errors and outliers: clean the data by identifying and 
correcting errors, outliers, and missing values.

 › Transformation: normalise the data if inputs and outputs are 
measured on different scales.

https://doi.org/10.1111/ajae.12155
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Methodological steps

The primary objective of using index numbers is to measure changes 
in a set of related variables over time or across different regions. 
In the context of productivity analysis, index numbers are used to 
estimate TFP, which represents the efficiency gains or technological 
progress in production.

Various index number formulas can be used, including the Laspeyres, 
Paasche, Fisher and Törnqvist indices. Each of these indices has its 
method of weighting and aggregating input and output quantities. 
For instance, the Laspeyres index uses base period weights, while 
the Paasche index uses current period weights. The Fisher index, 
being the geometric mean of the Laspeyres and Paasche indices, 
balances the strengths of both. The Törnqvist index, on the other 
hand, uses a weighted geometric mean of quantity ratios, with 
weights reflecting average shares of total expenditure or revenue. 
These indices help in quantifying the changes in productivity by 
comparing the aggregated outputs to the aggregated inputs over 
different periods.

Laspeyres Index

TFPL = 
∑J

j=1 qjt pj0

∑K
k=1 qkt pk0

Where

 › qjt is the quantity of output j  in period t  ; 
pj0 is the price of output j  in the base period 0

 › qkt is the quantity of input k  in period j  ; 
pk0 is the price of input k  in the base period 0

Paasche Index

TFPP = 
∑J

j=1 qjt pjt

∑K
k=1 qkt pkt

Where the prices pjt and pkt are from the current period t  rather 
than the base period.

Fisher Index

TFPF =  TFPL × TFPp

The Fisher index is the geometric mean of the Laspeyres and 
Paasche indices. It corrects the upward bias of Laspeyres and the 
downward bias of Paasche.

Törnqvist Index

lnTFPT = 
N

∑
i=1

0.5(Sit + Sit−1) ln(
qit

qit−1
)

44 Suppose a farm produces two outputs (wheat and corn) using two inputs (labour and fertiliser). The Laspeyres index uses the base period input and output quantities as weights. It may 
overstate productivity growth if the farm shifts towards goods that are becoming relatively cheaper over time. The Paasche index uses the current period quantities as weights. It may understate 
productivity growth if the farm shifts towards inputs that are becoming relatively more expensive. The Fisher index is the geometric mean of the Laspeyres and Paasche indices. It treats both periods 
symmetrically and does not suffer from the same upward or downward biases. The Törnqvist index uses the log change in inputs and outputs, weighted by the average share of each input/output 
across the two periods. Like the Fisher index, it is free from substitution bias.
45 For the full list of indicators, see DG AGRI: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cmef_en. Accessed 10 September 2024.

Where sit is the share of output i  quantity relatives, using the 
average revenue shares in the two periods as weights.

Laspeyres, Paasche, Fisher and Törnqvist indices use price and 
quantity data to directly measure productivity changes over time. 
Index numbers are valuable for estimating productivity when prices 
and quantities are available.

The Laspeyres and Paasche indices are straightforward to calculate, 
making them suitable for general assessments of agricultural 
productivity where a detailed analysis is not required. However, 
these indices assume simplistic linear production structures that 
may not hold for the complex nature of agricultural production. 
They can also have upward (Laspeyres) and downward (Paasche) 
biases. In contrast, the Fisher and Törnqvist indices are ‘superlative 
index numbers’ that provide a good approximation for more intricate 
agricultural production functions 44.

Given the unique characteristics of agricultural production, the 
Fisher and Törnqvist indices can better account for the variability 
in agricultural production.

Laspeyres and Paasche indices are straightforward to calculate 
at farm-level. Fisher and Törnqvist indices are more suitable for 
detailed analyses of farm-level productivity drivers, as they can 
account for the different types of farm production.

From a theoretical point of view, at regional/country level Fisher 
and Törnqvist indices are often preferred because they can better 
account for aggregation across the diverse outputs and inputs 
of farms in a region or country than Laspeyres and Paasche 
indices (see aggregation bias in Section 4.7 Issues in productivity 
estimation). However, in reality, if regional/national farm-level 
price and quantity data are limited, the Laspeyres and Paasche 
indices can be used to provide an assessment of overall agricultural 
productivity change.

How to read the results

If Laspeyres, Paasche and Fisher indices, have a base at 100 
(in other cases they can be at base 1, but the meaning is the same), 
a value greater than 100 for a given period (t) indicates productivity 
growth compared to the base period (s), while a value less than 100 
indicates a decline in productivity.

The Törnqvist index is calculated as the weighted geometric mean 
of output and input growth rates using average revenue/cost shares 
as weights. Values greater than 1 indicate productivity growth, while 
values lower than 1 show a decrease in productivity.

Note that the annual values may vary a lot. As underlined by the 
Commission in the description of its TFP indicator 45, this may be due 
to the climatic conditions that affect crop yields and have a strong 
impact on the crop output and, as a consequence, on the indicator. 
Therefore, a moving average over three years may be advised to be 
calculated to smooth the weather effect.

https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cmef_en
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Box 2. Understanding aggregate productivity trends over time

Consider a country that produces two main agricultural products: wheat and corn. Over a period of ten years, the government wants 
to analyse productivity trends in the agricultural sector.

 › Data collection: quantities produced; gather data on the quantities of wheat and corn produced each year.   
Prices: collect data on the prices of wheat and corn for the same period.

 › Using the Fisher index calculation: calculate the Fisher index, which balances the weights of both periods, providing a more accurate 
reflection of productivity changes.

 › Analysis price effect: determine how much of the productivity change is due to changes in the prices of wheat and corn.

 › Volume effect: determine how much of the productivity change is due to changes in the quantities produced.

By using the Fisher index, the government can accurately track productivity trends over the 10-year period and understand the 
contributions of price and volume changes to overall productivity. This helps in making informed policy decisions to enhance agricultural 
productivity.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)

Advantages and disadvantages

Table 7. Pros and cons of index numbers

Pros Cons

Simplicity

Straightforward to calculate using price, quantity and value 
data without requiring assumptions about the production 
function or farmer behaviour.

Aggregation bias

When using aggregated data, there is a risk of spatial 
aggregation bias, which can distort the true picture of 
productivity changes due to the loss of detailed information 
in comparison with farm data level.

Flexibility in the use

The Fisher and Törnqvist indices are superlative index numbers 
that can better approximate flexible production functions, 
capturing input substitution and non-constant returns to scale.

Bias

May have biases – Laspeyres has an upward bias, Paasche has 
a downward bias – If not using a superlative index.

Useful for time trend

It is useful to investigate the aggregate productivity trends over 
time and decompose changes into price and volume effects.

Data requirement

Requires data on prices and quantities of all inputs and outputs, 
which may be challenging for some agricultural products. 
Not particularly suitable for a farm-level analysis.

Data requirement

This approach is very useful for aggregated data, for example 
at a country or regional level.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)
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4.3. Details on the dynamic panel data models

4.3.1. Description

46 In econometrics, a ‘lagged dependent variable’ refers to a previous period’s value of the dependent variable, included as an explanatory variable in a model. This approach helps capture the 
dynamic effects and temporal dependencies in the data. For example, if a study examines the impact of various factors on farmers’ incomes, the model could include the previous year’s income 
(lagged dependent variable) to take into account the persistence of income over time.
47 The estimation of TFP using Solow residual with DPD and CFE is expected TFP for this expected motivation of that error term is iid and error ~ N (0,σ2).
48 Solow, R.M., Technical Change and the Aggregate Production Function, The Review of Economics and Statistics, Vol. 39, No 3, August 1957, p. 312. https://doi.org/10.2307/1926047.

Dynamic panel data (DPD) models belong to the group of correlation 
dynamic models. DPD models are highly effective for estimating 
productivity, primarily because they capture the dynamic nature 
of production processes by incorporating lagged dependent 
variables 46, and because they tackle endogeneity concerns (see 
Section 4.7 Issues in productivity estimation).

Here are the key contexts and reasons why DPD models are 
appropriate.

 › Time-varying productivity: agricultural productivity is influenced 
by various drivers that change over time, such as technological 
progress, changes in farming practices, and changes in 
environmental conditions. DPD models can effectively handle 
such time-varying unobserved effects, allowing for a more 
accurate estimation of productivity.

 › Lagged effects: agricultural production often involves lagged 
effects, where inputs used in one period affect outputs in 
subsequent periods. For example, investments in irrigation 
infrastructure or orchards may not yield immediate benefits but 
improve productivity over time. Dynamic models can incorporate 
these lagged relationships to understand better how current 
actions affect future productivity.

 › Control for endogeneity: input levels (like labour, land and capital) 
are often endogenously determined e.g. by expected output and 
productivity shocks. DPD models incorporate instruments and 
techniques like the generalised method of moments (GMM) to 
address the endogeneity of these inputs, providing more reliable 
estimates of the production function coefficients.

 › Unobserved Heterogeneity: farms and agricultural enterprises 
differ in many unobservable aspects, such as managerial skills, 
land quality, and microclimate conditions. DPD models can 
control for these unobserved individual effects, allowing for a 
more accurate estimation of TFP.

In summary, the suitability of DPD models for estimating TFP in 
agricultural economics stems from their ability to handle the 
dynamic nature of agricultural production, account for unobserved 
heterogeneity and address endogeneity issues by utilising the rich 
temporal information available in panel datasets.

The process of estimating TFP through dynamic panel data models 
encompasses two principal steps.

 › Estimation of the production function: this step uses an 
econometric model, specifically the GMM estimator, to estimate 
the production function’s coefficients. This estimator addresses 
multiple endogeneity issues and includes the lagged value of 
output. It is essential for accurately modelling the relationship 
between inputs (like labour and capital) and output, considering 
the dynamic nature of production processes.

 › Calculation of TFP as the Solow residual: the Solow residual is 
calculated as the difference between actual production and the 
portion of production attributed to measured inputs. It represents 
the portion of output growth that the growth in inputs such as 
capital and labour cannot explain 47.

Box 3. TFP and Solow residual concept

The Solow residual, a concept introduced by Solow 48, is one 
measure of TFP. It represents the portion of output growth 
that the growth in inputs such as capital and labour cannot 
explain. In other words, the Solow residual captures the 
impact of technological progress or efficiency improvements 
that allow a farm to increase its output without increasing its 
capital and labour inputs.

The DPD model and the CFE are econometric techniques that 
estimate TFP based on the Solow residual approach. These 
methods aim to isolate the contribution of technological 
progress and efficiency gains to output growth after 
accounting for the contributions of capital and labour inputs.

The Solow residual can be obtained using, as an example, the 
Cobb Douglas production Υ  = Ω  ∙ Nα ∙Kβ (but this concept 
remains the same for the other production functions), or the 
log formulation as lnΩ =∙ lnY − (α lnN − β lnK). 

The Solow residual can be estimated at the individual farm 
level or at the regional/national level. In the case of the farm 
level, the Solow residual measures how much output a farm 
produces compared to what would be predicted based on the 
input quantities. This relies on the assumptions of constant 
returns to scale. 

The comparison is made against a theoretical benchmark 
where output should increase proportionately with inputs, 
assuming no changes in technology or efficiency. A TFP value 
higher than one indicates the farm is achieving higher output 
than expected for the given inputs, suggesting technological 
advancements or improved efficiency. Conversely, a TFP 
value lower than one implies the farm is generating less output 
than expected for the given inputs, pointing to inefficiencies 
or technological setbacks.

Source: EU CAP Network supported by 
the European Evaluation Helpdesk for the CAP (2025)

https://doi.org/10.2307/1926047
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Data requirements and preparation

49 The use of the DPD at regional or national level is discouraged even if it is possible, given the low number of observations that may compromise the robustness of the results.
50 Biagini, L., Antonioli, F., and Severini, S., The Impact of CAP Subsidies on the Productivity of Cereal Farms in Six European Countries: A Historical Perspective (2008–2018), Food Policy, Vol. 119, 
August 2023. https://doi.org/10.1016/j.foodpol.2023.102473; and Mary, S., Assessing the Impacts of Pillar 1 and 2 Subsidies on TFP in French Crop Farms, Journal of Agricultural Economics, Vol. 64, 
No 1, February 2013, pp. 133-144. https://doi.org/10.1111/j.1477-9552.2012.00365.x.
51 In the more complex case it is necessary to adopt an Augmented Cobb-Douglas production function that, over than Ki,t (excluding the land value) and Ni,t , include also represents the amount 
of land – Li,t – and materials – Mi,t.
52 X  := {K,N} and αi,t is the constant term and ωi,t is the logarithm of Ωi,t .
53 All required stapes are reported in Biagini et al. (2023).

Data requirements

 › Choose the appropriate panel data set. DPD is usually adopted at 
the individual farm level as this level enables the use of samples 
with sufficient observations 49. In agriculture, this often involves 
data from sources like the FADN, complemented with Eurostat 
data for price indexes also used to deflate monetary values.

 › Ensure the data includes relevant variables such as output, 
labour, capital, and other inputs.

 › This method should be applied to a group of farms that have 
the same production technology. Moreover, these farms should 
belong to the same Member State to take into account country-
specific drivers such as local agricultural policies, environmental 
conditions, and economic contexts.

 › The minimum time span that is necessary is generally three 
time periods. This requirement stems from the need to construct 
valid instruments for the lagged dependent variable and other 
endogenous regressors. Specifically:

 › Time period 1 – provides the initial conditions
 › Time period 2 – allows for the first differencing
 › Time period 3 – provides the second lag, which serves as an 

instrument for the first-differenced equation

Data preparation:

 › Check for errors and outliers: clean the data by identifying and 
correcting errors, outliers and missing values.

 › Transformation: normalise the data if inputs and outputs are 
measured on different scales. The log transformation of inputs 
and outputs is needed for the Cobb-Douglas production function.

 › Panel structure: ensure the data is structured as a panel, with 
observations for each farm across multiple time periods. It is 
not mandatory to have a balanced panel dataset, meaning that 
it is acceptable if observations for each farm are not available 
for the entire period.

Methodological steps

This approach is based on a two-step procedure 50 that is described here for a generic farm-level analysis.

STEP 1 - Production function estimation

In the first step, the production function for the It,h farm at time t  is estimated using the Cobb-Douglas production function.

In this simple case 51, only two factors are used: capital stock – Ki,t – and labour – Ni,t. The Cobb-Douglas production function is written 
as follows:

Yi,t = Ωi,tK
βK
it N βN

it eϵi,t i = 1, … , N; t = 1, … ,T   (1)

where Yi,t is output, Ωi,t is the level of TFP, and X  := {K,N} represents the set of inputs used for the production function estimation (in 
this case, capital and labour).

To estimate the Cobb-Douglas function as reported in formula (1), the logarithmic transformation is adopted (small letters) 52:

yi,t = αi,t + βX xi,t + ωi,t + ϵi,t  (2)

The production function, to reduce the autocorrelation bias, is adopted using the Cochrane–Orcutt formulation to consider that the current 
level of productivity derives from the past level. This transformation removes the transmission and simultaneity bias and removes first-order 
autocorrelation. With this formulation, it also introduced the autoregressive component of production, transforming the Cobb-Douglas into 
a dynamic formulation 53:

yi,t = ρyi,t−1 + βx,t xi,t − ρβx,t xi,t−1 + (1−ρ)ηi + (γt−ργt−1) + ξi,t  (3)

https://doi.org/10.1016/j.foodpol.2023.102473
https://doi.org/10.1111/j.1477-9552.2012.00365.x
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With ρ  the autoregressive term, and εi,t the residual error.

The SYS-GMM 54 developed by Blundell & Bond 55 ingeniously solves multiple endogeneity issues.

The SYS-GMM estimator can address potential endogeneity issues (See Section 4.7.2 Possible biases) and provides a suitable solution for 
these endogeneity issues using instrumental variables, fixed effects and robust error terms.

Farms for which non-observable time invariant variables (such as farm size, geographic location, product specialisation, managerial abilities, 
different natural characteristics of the soil, etc.) may affect the production function, using first-difference transformation (subtracting past 
values from current values) can reduce the endogeneity deriving from omitted variables.

As explained earlier, inputs (like labour, land and capital) are often endogenously determined by expected output and productivity shocks. In 
addition, unobserved heterogeneity may be present; farms and agricultural enterprises differ in many aspects that are not easily observable, 
such as managerial skills, land quality and microclimate conditions. DPD models can control for these unobserved individual effects, allowing 
for a more accurate estimation of TFP. These endogeneity issues can be reduced using lagged values of the dependent variable and other 
instruments to address endogeneity. For example, the Arellano-Bond estimator uses lagged levels of the dependent variable as instruments 
for the differenced equation.

E[yi,t−2(Δyit−ρΔyi,t−1)]=0   (4)

In the SYS-GMM estimator, equations in levels and first differences are combined to improve the efficiencies of instrumental variables.

The SYS-GMM model should be validated through a series of specification tests. These include tests for autocorrelation, the Sargan test for 
the suitability of the instruments, Wald tests for the specification of the model and R2 values for the goodness of fit. The results of these 
tests indicate the overall econometric validity of the SYS-GMM model in the empirical context.

54 Using Ordinary Least Squares (OLS) to identify coefficients βX would deliver biased results (Ackerberg et al., 2007; Marschak & Andrews, 1944). Mundlak, (1963) solved the issue by using 
individual fixed effects (ηi) and time intercepts (γt), yi,t = αi,t + βX xi,t + γt + (ηi + ωi) + εi,t .Despite this effort, this estimator does not solve the autoregressive bias derived from 
productivity (the actual value of productivity deriving from the past value) and simultaneity bias (the input variable is adopted at the same time of production).
55 Blundell, R., and Bond, S., Initial Conditions and Moment Restrictions in Dynamic Panel Data Models, Journal of Econometrics, Vol. 87, No 1, November 1998, pp. 115-143. https://doi.org/10.1016/
S0304-4076(98)00009-8; and Blundell, R., and Bond, S., GMM Estimation with Persistent Panel Data: An Application to Production Functions, Econometric Reviews, Vol. 19, No 3, January 2000, 
pp. 321-340. https://doi.org/10.1080/07474930008800475.
56 Blundell, R., Bond, S., and Meghir, C., Econometric Models of Company Investment, in L. Mátyás and P. Sevestre (eds.), The Econometrics of Panel Data, Vol. 28, Springer Netherlands, Dordrecht, 
1992, pp. 388-413. https://doi.org/10.1080/07474930008800475; and Chamberlain, G., Multivariate Regression Models for Panel Data, Journal of Econometrics, Vol. 18, No 1, January 1982, pp. 5-46. 
https://doi.org/10.1016/0304-4076(82)90094-X.
57 Skevas, I., Lansink, A.O., and Skevas, T., Analysing Inefficiency in a Non-parametric Spatial-dynamic By-production Framework: A k -nearest Neighbour Proposal, Journal of Agricultural Economics, 
Vol. 74, No 2, June 2023, pp. 591-607. https://doi.org/10.1111/1477-9552.12522.
58 Ding, S., Guariglia, A., and Harris, R., The Determinants of Productivity in Chinese Large and Medium-Sized Industrial Firms, 1998–2007, Journal of Productivity Analysis, Vol. 45, No 2, April 2016, 
pp. 131-155. https://doi.org/10.1007/s11123-015-0460-0.
59 Färe, R., and Primont, D., Multi-Output Production and Duality: Theory and Applications, Springer Netherlands, Dordrecht, 1995. https://doi.org/10.1007/978-94-011-0651-1.

STEP 2 – TFP estimation

SYS-GMM allows us to estimate the Cobb-Douglas production function generating a set of Solow residuals. This is the starting point to assess 
the farm-level TFP in the following way

lnTFPi,t = [yi,t − (βkki,t + βnni,t)]   (4)

In other words, this is the difference between the current level of output yi,t minus the level of production yi,t − (βkki,t + βnni,t) 
explained by the input Ki,t , ni,t , βk , βn retrieved with step 1.

Considering that the values of π1 and π2 are coefficients directly estimated from Equation (3). However, given the constraints π1 = βx,t 
and π1 = ρβx,t , the true value of βx,t must be recalculated. This is achieved by minimising the distance between π1 and π2

ρ
 where ρ 

represents the autoregressive coefficient.

For this motivation, to find the right values of βk and βn we need to find the minimum distance between βx,t obtained from π1 and one which 
obtains as  βx,t = π2

ρ   considering that ρ is the autoregressive coefficient (common factor restriction) using a minimum distance estimator (MDE).

The MDE 56 is a statistical method necessary to adjust for unobserved heterogeneity across individuals or time. MDE is adopted to estimate 
βk using the value π1,k and π2,k and βn relied on π1,n and π2,n.

To obtain the correct value of TFP, it is necessary, according to Skevas et al. 57 (equation 8 in the cited paper) and Ding et al. 58 (equation 2a 
in the cited paper), in order to restore the Färe & Primont 59 proportionality condition, to use this formula:

lnTFPi,t = yi,t − [ 1
βk+βn

(βkki,t + βnni,t)]   (5)

Software implementation: implement the model using statistical software such as R, Stata, or MATLAB. These platforms offer packages and 
functions specifically designed for dynamic panel data models (e.g. ‘plm’ in R, ‘xtabond’ in Stata).

https://doi.org/10.1016/S0304-4076(98)00009-8
https://doi.org/10.1016/S0304-4076(98)00009-8
https://doi.org/10.1080/07474930008800475
https://doi.org/10.1080/07474930008800475
https://doi.org/10.1016/0304-4076(82)90094-X
https://doi.org/10.1111/1477-9552.12522
https://doi.org/10.1007/s11123-015-0460-0
https://doi.org/10.1007/978-94-011-0651-1
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Figure 1. Graphical representation of the methodological steps of the DPD model

60 See the full reference for Biagini et al (2023) in footnote 50.

Step 1: Estimation Cobb-Douglas production function via SYS-GMM 

yi,t=ρyi,t-1 + π1xi,t + π2xi,t-1 + (ηi* + γt* + ω{i,t})

Minimum distance estimator (MDE) to retrieve 
βx

Step 2: TFP estimation as Solow residual  
(using the coefficients βx from MDE)

lnTFPi,t = [yi,t − (βkxi,t)]

Source: adapted from Biagini et al. (2023)

How to read the results

The estimated coefficients provide insights into how changes 
in input levels affect output. The TFP is calculated as the Solow 
residual, capturing the effects of technological progress and 
efficiency improvements.

The estimated values are expressed in a logarithm form. To obtain 
the value of TFP it is necessary to use this formula: TFP  = eln(TFP)

High TFP values indicate high productivity and vice versa. Hence, 
increases over time in the level of TFP indicate increases over time 
in the productivity of the considered farms.

It is important to note that the TFP calculated using this method only 
reflects the variable components, excluding any fixed factors. This 
means that the analysis does not consider time-invariant elements, 
such as soil fertility or the designation of less favourable areas.

Box 4. Literature example of TFP calculated using the 
Solow residual and SYS-GMM

Biagini et al 60 investigated the effects of CAP subsidies 
on the TFP of cereal farms across six European countries 
using individual farm data (FADN). TFP was calculated using 
the Solow residual and SYS-GMM. This method involves 
estimating a production function and deriving TFP as the 
part of output growth that is not explained by the input 
growth. The production function used in this study was a 
Cobb-Douglas function, which includes inputs such as land, 
labour, capital and materials. Land is measured in value rather 
than in hectares, allowing for a more accurate assessment 
of its contribution to production given varying land values 
across regions. The analysis was conducted at the farm level, 
focusing specifically on cereal farms. This included farms 
primarily engaged in the production of field crops within 
the specified countries. The study covered six European 
countries: France, Germany, Italy, Poland, Spain and the 
United Kingdom. The analysis period spanned from 2008 to 
2018, providing a comprehensive overview of the productivity 
impacts over a decade.

Source: EU CAP Network supported by 
the European Evaluation Helpdesk for the CAP (2025)
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Advantages and disadvantages

Table 8. Pros and cons of DPD models in comparison with other methods

61 Ibid.

Pros Cons

Efficiency

The system GMM estimator, by incorporating a system of 
instrumental variables in both first differences and levels, 
effectively addresses the problem of the use of weak 
instruments. This approach results in more efficient and 
consistent estimates, as it leverages additional moment 
conditions to enhance the robustness of the estimation process.

Complexity

DPD models, including system GMM, require advanced 
econometric skills. This is because they involve complex 
estimation techniques and handle potential issues like 
endogeneity, autocorrelation, and heteroskedasticity.

Exploits panel data advantages

It leverages the panel data structure of panel data (including 
non-balanced panels). This allows studying dynamics over 
time, providing insights into how past values of the dependent 
variable influence current values, which is useful for 
understanding productivity changes over time.

Data requirement

SYS-GMM relies on a panel dataset of individual farms 
(e.g. FADN). The dataset must include only farms represented 
for at least three years. This is to have lagged values of 
dependent variables (two lagged values, in t and t-1) and lagged 
for explanatory variables. These are adopted as instrumental 
variables.

Controls for endogeneity

DPD estimation addresses most endogeneity issues, including 
the correlation between explanatory variables and error terms, 
omitted variable bias, and unobserved panel heterogeneity.

Sample size limitation

Farms with negative values of input or output, when adopted to 
the logarithm transformation, are not taken into consideration. 
This (very limited but existing) number of cases has to be 
excluded from the analysis.

Flexibility in modelling

DPD allows for the inclusion of lagged dependent variables and 
a distributed lag structure for explanatory variables. This allows 
for accommodating dynamic relationships that other methods 
do not.

Production function

Despite some attempts 61, DPD adopted only the Cobb-Douglas 
Production function. This imposes some restrictions on the 
assumed technology that may not be verified.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)



PAGE 26 / MARCH 2025

4.4. Details on the control function estimator approach

Description

62 Olley, G.S., & Pakes, A., (1996); Levinsohn, J., & Petrin, A., (2003); Ackerberg et al. (2007;2015).
63 Wooldridge, J.M., On Estimating Firm-Level Production Functions Using Proxy Variables to Control for Unobservables, Economics Letters, Vol. 104, No 3, September 2009, pp. 112-114. https://doi.
org/10.1016/j.econlet.2009.04.026.
64 Rizov, M., Pokrivcak, J., and Ciaian, P., CAP subsidies and productivity of the EU farms, International Association of Agricultural Economists 2012 Conference, Foz do Iguacu, Brazil, 
August 18-24, 2012. https://ideas.repec.org/p/ags/iaae12/124970.html.

CFE is a robust econometric method used to estimate TFP while 
addressing the issue of endogeneity in production function 
estimation. This approach requires two steps. The first step is 
divided into two stages.

 › First-stage regression: the process begins with estimating 
a regression where a proxy variable for productivity is used, 
considering that TFP influences the level of inputs but is not 
directly observable by researchers. Typically, the proxy used can 
be investment or intermediate inputs. This proxy variable is then 
regressed on capital and other inputs. This step helps to capture 
the unobserved productivity shocks that significantly influence 
the output but are not directly observable.

 › Second-stage estimation: the estimated proxy or control function 
obtained from the first stage is then included in the second-stage 
estimation of the main production function. This inclusion acts 
as a control for the endogeneity of the inputs (see Section 4.7 
Issues in productivity estimation), ensuring that the estimates 
of the production function coefficients (like labour and capital 
elasticities) are consistent and not biased by omitted variables 
or reverse causality.

Finally, TFP is calculated as the residual from the production function 
that is estimated in the second step (Solow residual) (see Box 3: TFP 
and Solow residual concept, in Section 4.3 Description of the DPD 
approach).

The use of CFE is based on two fundamental assumptions.

 › Strict monotonicity: a proxy variable, such as investment or 
materials, consistently rises in response to increases/decreases 
in unobserved productivity. This consistent relationship 
enables the use of the proxy variable to account for changes in 
productivity that are not directly observable.

 › Timing: firms observe their productivity shock before making 
non-fixed input choices like labour, but only after choosing 
capital and other fixed inputs. This timing assumption is crucial 
for identification.

In practice, the method uses the Cobb-Douglas production function 
with log-linearisation of input and output:

yi,t = αi,t + βX xi,t +  ωi,t + εi,t   (6)

Then, defining the proxy variable as a strictly monotonic function of 
unobserved productivity change is necessary. The proxy variables 
adopted in the CFE can be intermediate inputs or investments. 
This proxy helps to isolate the effect of these changes from the 
observed inputs, thereby correcting for potential biases (particularly 
simultaneity and transmission bias) in the estimation of production 
functions.

The development and refinement of the control function estimator 
method have been significantly influenced by the contributions 
of several authors 62. Additionally, Wooldridge 63 introduced a one-
stage variant of this method that relies on GMM.

Box 5. Literature example of TFP calculated using 
a control function estimator

The study of Rizov et al. 64 investigated the impact of CAP 
subsidies on farm TFP in the EU, employing a CFE that directly 
incorporated the effect of subsidies. The study focused on 
both decoupled and coupled CAP subsidies, examining their 
impacts before and after the decoupling reform implemented 
in 2003. The analysis covered the period from 1990 to 2008, 
providing a comprehensive view over nearly two decades. The 
study conducted an analysis using data from individual farms 
across EU-15 countries, sourced from the FADN measures at 
the farm level, within six farm-type samples for each country. 
The study found that CAP subsidies had a negative impact 
on farm productivity before the decoupling reform. After the 
reform, the effect of subsidies on productivity became more 
nuanced, turning positive in several EU-15 countries.

Source: EU CAP Network supported by 
the European Evaluation Helpdesk for the CAP (2025)

https://doi.org/10.1016/j.econlet.2009.04.026
https://doi.org/10.1016/j.econlet.2009.04.026
https://ideas.repec.org/p/ags/iaae12/124970.html
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Data requirements and preparation

Data requirements

 › Choose the appropriate panel data set. CFE is usually adopted at 
the individual farm level as this level enables the use of samples 
with sufficient observations 65. In agriculture, this often involves 
data from sources like the FADN, complemented with Eurostat 
data for price indexes also used to deflate monetary values.

 › Ensure the data includes relevant variables such as output, 
labour, capital and other inputs.

 › This method should be applied to a group of farms that adopt 
the same production function. Moreover, these farms should 
belong to the same Member State to take into account country-
specific drivers such as local agricultural policies, environmental 
conditions and economic contexts.

 › The minimum time span that is necessary is generally three 
time periods. This requirement stems from the need to construct 
valid instruments for the lagged dependent variable and other 
endogenous regressors.

 › In case of using materials as proxy: (i) the first period is used to 
compute the expected value of the productivity shock conditional 
on capital and the proxy; (ii) the second period is used to estimate 
the conditional expectation of the productivity shock; and (iii) the 
third period is needed to identify the labour coefficient.

 › In case of using investment as proxy: as investment needs to be 
non-zero, at least three periods are needed to allow for non-zero 
investment to be observed for a reasonable number of farms.

Data preparation

 › Check for errors and outliers: clean the data by identifying and 
correcting errors, outliers and missing values.

 › Transformation: normalise the data if inputs and outputs are 
measured on different scales. In particular, for production 
functions take into account that it adopted the log transformation. 
This is not mandatory for all types of production but specifically 
for Cobb-Douglas or similar.

 › Panel structure: the CFE is in general used at the farm level with 
a panel dataset. Ensure the data is structured as a panel, with 
observations for each farm across multiple time periods. It is 
not mandatory to have a balanced panel dataset, meaning that 
it is acceptable if observations for each farm are not available 
for the entire period.

65 The use of the DPD at regional or national level is discouraged even if it is possible, given the low number of observations that may compromise the robustness of the results.
66 See footnotes 36 and 37 for the full references for Olley & Pakes (1996) and Levinsohn & Petrin (2003).
67 In this case use as proxy the investments, but the same process is conducted using materials.

Methodological steps

STEP 1 – production function estimation

 › Model specification

The production function is typically specified as a Cobb-Douglas 
form, but other forms like Translog or CES can also be used. The 
general form of the production function is:

Yit = Ωit∙K
βk
it ∙L βl

it N βn
it  

where Yit is the output, Kit is capital, Nit is labour, Lit is land, 
and Ωit represents total factor productivity (TFP).

 › Classification of the variables: fixed, quasi-fixed and free variables

 › Fixed variables: inputs that can change very slowly and 
can be assumed in the short time fixed, such as land Lit

 › Quasi-fixed variables: inputs that can change but with 
some adjustment costs, such as capital Kit

 › Free variables: inputs that can be adjusted freely 
in the short term, such as labour Nit

 › Proxy variable selection

 › Choose proxy variables that can control for unobserved 
productivity shocks. Common proxies include investment 
or intermediate inputs like materials 66. The proxy variable 
should be correlated with the unobserved productivity 
shocks, but not with the error term.

 › Estimation of productivity

With the Cobb-Douglas production function, the logarithm 
transformation of all the variables (indicated in lowercase letters) 
is used.

yit = β0+βkki,t+βnni,t+βlli,t +  ωi,t + ηi,t

With ωit is the log of productivity and ηit is the measurement error 
that can be serially correlated. Both ωit and ηit are unobservable.

It is necessary to assume that ωit follows an exogenous first-order 
Markov process:

p (ωi,t|{ωi,τ}
t
τ=0 , Ii,t−1) = p (ωi,t|ωi,t−1)

OR that the actual level of productivity depends on the past level, 
which is considered an accumulation of the past information 
available by the farmer.

Specifically for the capital, it is necessary to write the law of motion 
of the capital 67:

ki,t = (1−δ)ki,t−1 + ii,t−1)

The level of the proxy, in this case, investments, is chosen at time 
t−1, knowing that it depends on capital (in this case, composed 
of fixed Lit and quasi fixed factors Kit  ) and on the level of 
productivity (ω).

ii,t−1 = f(ki,t−1, li,t−1, ωi,t−1)
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We can invert this formula as:

ωi.t−1 = f−1(ki,t−1, li,t−1, ii,t−1) = g(ki,t−1, li,t−1, ii,t−1)

Considering that p (ωi,t|ωi.t−1)  or ωi,t=pωi.t−1  we can write:

ωi.t = ρωi.t−1 = ρg(ki,t−1, li,t−1, ii,t−1) = h(ki,t−1, li,t−1, ii,t−1)

Where h  is a non-parametric function (polynomial or kernel function), we insert this non-parametric function into the production function.

yit = β0 + βkki,t + βnni,t + βlli,t + h(ki,t−1, li,t−1, ii,t−1) + ηi,t

Where we can obtain the estimation function parameters βk and βn .

68 See footnote 59 for the full reference of Fare & Primont (1995).

Example of implementation

1. Data collection: gather data on output, inputs (capital, labour, 
materials) and a suitable proxy variable (e.g. investment or 
intermediate inputs)

2. First stage regression: obtain the non-parametric function

3. Second stage estimation: incorporate the non-parametric 
function into the production function as a control function

The CFE is a robust method for estimating production functions in 
the presence of endogeneity. By using proxy variables to control for 
unobserved productivity shocks, it provides consistent and unbiased 
estimates, making it a valuable tool for evaluating the impact of 
agricultural policies and interventions on farm productivity.

STEP 2 – TFP estimation

Similar to SYS-GMM, it is possible to estimate productivity based 
on the Cobb-Douglas production function generating a set of Solow 
residuals. These are the starting points to assess the farm-level TFP 
in the following way:

lnTFPi,t = [yi,t − (βkki,t + βn ni,t + βl li,t)]

This is the difference between the current level of output yi,t 
minus the level of production yi,t=(βkki,t + βn ni,t + βl li,t) 
explained by the input ki,t , ni,t and li,t considering the value of 
βk and βn retrieved by step 1.

To obtain the correct value of TFP, it is necessary, similarly to DPD, 
to restore the Färe & Primont 68 proportionality condition by using 
this formula:

lnTFPi,t = yi,t − [ 1
βk +βn  +βl 

(βkki,t + βnni,t + βlli,t)]

How to read the results

Interpreting the results of the CFE requires a deep understanding of 
the drivers that influence agriculture productivity, particularly the 
differences between fixed factors. This process involves examining 
how efficiently resources like labour and capital are used to produce 
outputs, considering the impact of investments, improvements in 
worker productivity and the strategic use of resources.

The CFE method is particularly valuable because it helps address 
issues of endogeneity, where explanatory variables are correlated 
with the error term in a model, thus providing more accurate and 
reliable estimates of TFP. Using the CFE, researchers can derive 
TFP values as Solow residuals specific to each farm and that vary 
over time.

Similar to DPD, high TFP values indicate highly productive farms 
and vice versa. Therefore, increases in TFP over time suggest an 
increase in the productivity of the considered farms. Unlike DPD, 
TFP calculated using CFE includes fixed components. This means 
that the analysis considers both time-invariant elements, such as 
soil fertility or the designation of less favourable areas, and that TFP 
can be changed by the farm in the short term.

Analyse the drivers of productivity

Drivers of productivity can be assessed with a regression analysis. 
In other words, the correlation models explained in Chapter 5 of 
the guidelines can be used to determine the impact of various 
explanatory variables (the drivers) on productivity. The dependent 
variable is the TFP, and the explanatory variables may include CAP 
measures, farm size, access to credit, farmer experience or age, 
production specialisation and product mix.



PAGE 29 / MARCH 2025

Advantages and disadvantages

Table 9. Pros and cons of CFE for productivity estimation

Pros Cons

Dynamic modelling

The inclusion of dynamics in the production function 
estimation captures the effect of past productivity shocks 
on current output.

Sensitivity to proxy variable choice

The results are highly sensitive to the choice of proxy variable, 
and the strict monotonicity assumption required for the proxy 
may not always hold, potentially biasing the estimates.

Flexibility in proxy variable selection

Allows for the use of various proxy variables to control 
for unobserved productivity, providing flexibility in 
application across different contexts and datasets.

Reliance on timing assumptions

Depends on specific timing assumptions regarding when farms 
observe productivity shocks relative to their input choices. 
Violations of these assumptions can lead to biased estimates.

Controls for endogeneity

Effectively addresses the endogeneity of input choices 
by controlling for unobserved productivity shocks, leading 
to more consistent estimates of production function 
coefficients and TFP.

Sample size limitation

In some variants, such as the Olley-Pakes approach, 
only firms with positive investments can be included, 
which may significantly reduce the sample size and 
affect the representativeness of the results.

After adopting the logarithm transformation, farms 
with non-positive input or output values are excluded.

No need for external instruments

Unlike DPD, the CFE does not rely on external instrument 
variables, which can be difficult to justify or obtain.

Production function

Currently, CFE adopts only the Cobb-Douglas production 
function to estimate TFP.

Exploits panel data advantages

It leverages the panel data structure to study dynamics over 
time, providing insights into how past values of the dependent 
variable influence current values, which is essential for 
understanding productivity changes.

Potential for other biases

While it controls for endogeneity, the approach may not fully 
account for other potential biases, such as measurement 
errors or omitted price variables, which could also affect 
TFP estimates.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)
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4.5. Details on the data envelopment analysis

69 The efficiency score is calculated by comparing the DMU’s performance to the best-performing DMU in the set analysed.
70 Homogeneous in terms of operating under similar technology conditions and using the same types of inputs to produce the same types of output; in that sense, any differences in their 
efficiencies can be attributed to their management and operational practices.

Description

The data envelopment analysis (DEA) is a linear programming 
technique used to measure the relative 69 efficiency of a 
homogeneous set 70 of decision-making units (DMUs; farms in the 
case of agricultural policy assessment) that use multiple inputs to 
produce output. DEA constructs an empirical production frontier 
with the DMUs in the sample to measure efficiency and aims to 
identify the sources and amounts of inefficiency for every DMU 
included in the analysed sample.

Data requirements and preparation

In the case of agricultural policy analysis, data for DEA mostly 
originates from Member State-specific FADN individual farm 
data sets for a given year and usually for the most recent one. 
Nevertheless, FADN data should be checked for errors, outliers 
and missing values which can all significantly affect the validity 
of the analysis. Also, it is necessary to normalise the data if inputs 
and outputs are measured in different scales. Furthermore, the 
number of DMUs to be analysed should be large enough to allow for 
a meaningful analysis.

Methodological steps

The standard practice is to estimate a single frontier for the 
whole sample of farms considered. However, in the case of 
significant technology heterogeneity, more than one farm-type 
specification can be utilised, reflecting (indicatively) different 
output-specialisation and production sustainability orientations, 
to capture differences in available resource endowments, economic 
infrastructure and other characteristics of the physical, social, 
institutional and economic environment, which altogether entails 
technological heterogeneity. For example, different frontiers can 
be estimated for different farm types (e.g. livestock farms vs crop 
farms), or for farms with different technologies (e.g. organic farms 
vs conventional farms).

This step also involves choosing the DEA model, which can be input-
oriented or output-oriented and involves a decision whether the 
focus is on minimising inputs for a given level of outputs (input-
oriented) or maximising outputs for a given level of inputs (output-
oriented). Also, it involves a choice between assuming constant 
returns to scale (all firms operate at an optimal scale) or variable 
returns to scale (firms operate at different scales).

This is followed by the construction of the DEA model, namely the 
formulation of the linear programming problem for each DMU, which 
defines the efficiency frontier and calculates the efficiency score. 
This is done through the use of DEA-specific software or linear 
programming solvers such as R or MATLAB.

The following step involves retrieving the solution of the linear 
programming problem for each DMU to obtain efficiency scores 
and the identification of the efficient frontier which consists of the 
sample’s DMUs with an efficiency score of 1.

The extension of efficiency analysis in time dimension results in 
productivity analysis. TFP, as a measure of productivity, considers 
not only the contribution of each production factor but also the role 
of the interaction of inputs within the production process. In this 
line, the time evolution of productive efficiency is captured by the 
Malmquist TFP index (MPI) which is defined as time t  as:

MPIt = (ΔTE)t × (TC)t

Where TC  is technical change (or technological change) and 
ΔTE  denotes a change in technical efficiency between periods 
t  and t−1.

Technical change captures the ability of the farms to introduce 
new technologies – innovation which becomes available and 
pushes the frontier ‘outwards’ (technological progress) or ‘inwards’ 
(technological deterioration). In this line, although disruptive 
innovations are of primary importance for the movement of the 
frontier, the exploitation of the technological progress by each farm 
may be realised based on incremental innovation. The ΔTE  term 
is defined as the ratio of the farm’s technical efficiency in time t  to 
the farm’s technical efficiency in a period t−1.

The Färe-Primont productivity index is based on fixed weights, 
making it a transitive index that allows for multilateral and multi-
temporal comparisons, unlike the Malmquist index, which is better 
suited for bilateral comparisons. The Färe-Primont index uses 
implicit or shadow prices to aggregate inputs and outputs, with these 
prices often obtained using methods such as DEA. The transitivity 
property is achieved by selecting a representative observation 
(e.g. the sample mean), for which shadow prices are computed 
and applied in the aggregation process. Like the Malmquist index, 
the Färe-Primont productivity index can also be decomposed into 
meaningful components, such as technical change, efficiency and 
scale changes.

How to read the results

DEA estimates efficiency scores for each DMU and indicates how 
close it is to the efficient frontier. A score of 1 indicates that the 
DMU is on the efficiency frontier, and hence, is considered efficient. 
Scores less than 1 indicate efficiency losses. By identifying the 
sources and extent of inefficiency, it facilitates the improvement of 
productive performance by targeting specific areas of inefficiency.

Values of the Malmquist TFP index greater than one indicate 
improvement in productivity, while values less than one indicate 
deterioration. The same applies to each one of the two components 
of the Malmquist index (TC and ΔTE).
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Analyse the drivers of productivity

Drivers of productivity can be assessed with truncated regression 
analyses to determine the impact of various explanatory variables 
(the drivers) on productivity 71. The dependent variable is the 
TFP, and the explanatory variables may include CAP measures, 
farm size, access to credit, farmer experience or age, production 
specialisation, product mix, etc.

71 Simar, L. and Wilson, P.W., Estimation and Inference in Two-Stage Semi-parametric Models of Production Processes, Journal of Econometrics, Vol. 136, No 1, January 2007, pp. 31-64. 
https://www.sciencedirect.com/science/article/abs/pii/S0304407605001594.

Advantages and disadvantages

Advantages and disadvantages of DEA can be summarised as 
follows.

Table 10. Pros and cons of the DEA

Pros Cons

Multiple inputs and outputs

DEA simultaneously considers multiple inputs and outputs and 
hence, is appropriate for the analysis of productive performance 
of complex systems.

Data sensitivity

DEA results can be sensitive to the selection of inputs and 
outputs. Also, results can be sensitive to data quality and 
accuracy. Furthermore, DEA cannot handle zero values in the 
dataset.

Non-parametric method

DEA is a non-parametric method suitable for evaluating the 
relative efficiency of DMUs without imposing specific functional 
forms or assumptions on the production process.

Handling of noise

DEA does not consider the noise in data which may result in 
an underestimation of the efficiency of the analysed firms. To 
address this limitation of DEA, a two-stage bootstrapped DEA 
is used and results present bias corrected technical efficiency 
(bcTE) scores.

Relative efficiency measurement

DEA measures the relative efficiency of DMUs of a sample by 
comparing them to the best performers in the sample used, 
and not against a single best practice. This can provide insights 
into the practices of the most efficient firms in the sample 
considered.

Number of DMUs

The reliability of DEA estimates diminishes when the number of 
firms analysed is relatively small.

Outlier sensitivity

DEA is sensitive to outliers and extreme values can 
disproportionately affect the efficiency frontier.

Lack of causal inference

If not combined with causal analysis, DEA scores do not possess 
causal properties.

Interpretability

When combined with causal analysis, DEA results can be 
difficult to interpret. Interpretation requires careful explanation 
and understanding of the relevant (for each analysis) context.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)

https://www.sciencedirect.com/science/article/abs/pii/S0304407605001594
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4.6. Details on stochastic frontier analysis

Description

The stochastic frontier analysis (SFA) is an econometric method 
used to estimate the efficiency of DMUs by separating random 
noise from inefficiency in the production process. This technique 
is widely employed in various fields, including economics, finance 
and operations research, to analyse the production function or cost 
function. In summary, the key components of the SFA approach are 
first a production function that describes the relationship between 
inputs and the output. For this first part, a functional form must be 
assumed e.g. Cobb-Douglas or Translog are generally used. The 
second component is the inefficiency term that measures the 
degree to which a DMU, that was given to a set of inputs, maximises 
output. The standard SFA approach relies on assuming specific 
distributions for the inefficiency term, for example, half-normal, 
truncated normal or exponential distributions. The final component 
is the random noise, which captures output variability due to 
drivers outside the DMU’s control (e.g. weather, luck). For this last 
component, a standard normal distribution is assumed.

Once all three key components are defined, parameters of the 
production technology are generally obtained through maximum 
likelihood, which involves non-linear programming. Many software 
like Limdep, R and Stata allow the estimation of the standard SFA 
models.

Data requirements and preparation

The inputs and the output variables must be clearly defined. In the 
case of multiple outputs, the standard SFA model must be extended 
using some complex representations of the production technology. 
In the cases where the production function is assumed to be either a 
Cobb-Douglas or a Translog functional form, a specific requirement 
for the data (inputs and output) is that they must be strictly positive 
since these functional forms involve a logarithm. Fortunately, there 
are some transformations or specific functional forms that can be 
used to accommodate zero and negative data.

Methodological steps

As with any benchmarking study, the first step in running a SFA 
model is to clearly define the objective of the analysis, such as 
measuring technical efficiency, cost efficiency or allocative 
efficiency. Next, you must select the DMUs whose efficiency will 
be analysed. After gathering data on relevant inputs and outputs 
– such as labour, capital, materials, and output quantities or 
values – the next critical step in the SFA framework is to define the 
functional form of the production or cost function. More advanced 
representations of production technology, like the distance function, 
may also be considered. Common choices for the functional form 
include the Cobb-Douglas function for its simplicity or the Translog 
function for its flexibility. For example, in the case of the production 
function, we have:

Yi = f (Xi;β) × e(Vi⁻Ui) 

Where:

 › Yi  =  output

 › Xi  =  inputs

 › Yi  =  parameters to be estimated

Another critical step in the process is specifying the error terms. 
Typically, the random error term vi is assumed to follow a normal 
distribution, N(0,σ 2

v) , while the inefficiency term ui follows a 
distribution defined on positive values, such as the half-normal, 
exponential, truncated normal, Rayleigh or gamma distributions. 
Once these steps are completed, the model can be estimated 
using maximum likelihood to obtain the production and variance 
parameters. Estimation can be performed using econometric 
software like Stata, R or specialised packages such as Limdep. 
Post-estimation steps include model diagnostics and checks 
(e.g. model fit, statistical tests), calculating efficiency scores, and 
analysing and interpreting the results. Additionally, cross-validation 
and robustness checks can be conducted to ensure the reliability 
of the findings.

How to read the results

Once the SFA model is estimated (using Cobb Douglas or Translog), 
the production frontier parameters can be interpreted as elasticities. 
For instance, in the case of milk production, if the elasticity of 
intermediate consumption is 0.45, this implies that if this input 
increases by 1% milk production will also increase by 0.45%. The 
model also provides distribution parameters for the inefficiency 
and the random noise term.

Using these parameters, the efficiency of each observation can be 
measured. An efficiency score of 0.94, or 94%, in the case of milk 
production, means that given the current level of the inputs, milk 
production is 6% lower than its potential maximum level.

Much like in DEA, TFP changes can be estimated using an SFA and 
decomposed into its constituent parts, such as technical change 
and efficiency change. Assuming that TFP change is calculated 
as the difference between changes in output and input, given by:

dTFP
dt  = dY

dt  − ∑
j

Sj 
dX
dt

A value of 0.021 indicates an annual increase in TFP of 2.1%.

Analyse the drivers of productivity

Drivers of productivity can be assessed with a regression analysis. 
In other words, the correlation models explained in Chapter 5 of 
the guidelines can be used to determine the impact of various 
explanatory variables (the drivers) on productivity. However, in SFA, 
the correlation analysis is not performed in a separate stage but 
simultaneously with the stage of estimating the production function. 
The dependent variable is the TFP, and the explanatory variables 
may include CAP measures, farm size, access to credit, farmer 
experience or age, production specialisation and product mix.
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4.6.1. Advantages and disadvantages

The advantages and disadvantages of the SFA approach are summarised in the next table.

Table 11. Pros and cons of the SFA

Pros Cons

Handling of noise

This is the core advantage of the SFA approach. By accounting 
for random errors and statistical noise in the data, SFA provides 
a more accurate and realistic measure of efficiency compared 
to deterministic approaches. SFA therefore provides some 
flexibility, which is particularly useful in real-world data where 
such noise is unavoidable.

Multiple inputs and outputs

SFA can handle multiple output variables, but this requires using 
a complex representation of the production technology.

Statistical Inference

SFA models facilitate statistical testing for various hypotheses, 
including the presence of inefficiency and the significance of 
different inputs.

Specification of the production function

The choice of the functional form for the production function 
(e.g. Cobb-Douglas, Translog) significantly impacts the 
results. Incorrect specifications can lead to biased efficiency 
estimates. In the case of the use of a flexible functional form 
like the Translog, standard economic assumptions can be 
violated (e.g. non-positive marginal productivity). Moreover, 
the assumptions regarding the distribution of the inefficiency 
term (e.g. half-normal, truncated normal) affect the results. 
However, the inefficiency distribution assumption does not 
affect the ranking (in terms of efficiency) of the DMUs.

Technology parameters

SFA provides detailed information about the production function 
parameters (elasticities, marginal productivities), which can be 
useful for policy analysis and decision-making.

Data requirements

SFA requires a large sample size and good quality data. 
In addition, while SFA can be applied to cross-sectional data, 
panel data (multiple observations over time for each DMU) 
generally provides more robust estimates but also requires 
more extensive data collection.

Flexible distributional assumptions

SFA allows for various statistical distributions of the inefficiency 
term (e.g. half-normal, truncated normal, exponential, gamma 
and Rayleigh), making it adaptable to different contexts and 
types of data.

Collinearity among the inputs

As an econometric approach, SFA is subject to a high 
correlation between the input variables, which can affect 
the quality of the estimation.

Outlier sensitivity

SFA is less sensitive to outliers and extreme values.

Complexity of estimation and results

SFA estimations are based on nonlinear programming 
for the estimation of corresponding maximum likelihoods. 
The results of SFA models, including efficiency scores 
and parameter estimates, can be complex and challenging 
to interpret for non-experts.

Environmental control variables/efficiency determinants

Several environmental variables, like temperature and 
precipitation, directly affect agricultural production. These 
environmental variables can be easily handled in SFA. Moreover, 
SFA can easily handle drivers of efficiency in a single step.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)
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4.7. Further issues in productivity estimation

4.7.1. The choice of the production functions

Cobb-Douglas production function

The Cobb-Douglas production function is one of the most widely used forms due to its simplicity and empirical applicability. It is expressed as:

Y = Ω ∙ Nα ∙ Kβ

Where Y  represents the total output, N  and K are the inputs of labour and capital, respectively, Ω  is a constant term representing total 
factor productivity, and α  and β  are the output elasticities of labour and capital, respectively. These elasticities measure the percentage 
change in output resulting from a one per cent change in labour or capital, holding other factors constant. The Cobb-Douglas function assumes 
that there are constant returns to scale if α + β = 1 increasing returns to scale if α + β > 1, and decreasing returns to scale if α + β < 1.

Advantages

 › Simplicity: easy to estimate and interpret

 › Empirical applicability: widely used in empirical studies

Disadvantages

 › Assumption of constant elasticities: may not capture varying 
relationships between inputs and outputs

Translog (transcendental logarithmic) production function

The Translog production function is a flexible extension of the Cobb-Douglas function. Unlike the Cobb-Douglas function, which assumes 
constant elasticities of substitution between inputs, the Translog function allows these elasticities to vary. This flexibility enables it to more 
accurately capture the changing relationships between inputs like labour and capital as their proportions change in the production process. 
The Translog function is expressed as:

ln(Y ) = a0 + aLln(N ) + akln(K ) + 12 bNN (ln(N ))² + 12 bKK (ln(K ))² + bNK  ln(N ) ln(K )

Where a0 , aN , aK , bNN , bKK , and bNK are the coefficients to be estimated. This function allows for interactions between inputs, 
meaning the effect of changing one input on output can depend on the level of other inputs. The Translog function is particularly useful for 
analysing cases where the substitution between inputs is not constant.

Advantages

 › Flexibility: can capture varying elasticities of substitution

 › Detailed interaction: allows for interaction terms between inputs

Disadvantages

 › Complexity: more complex to estimate and interpret compared 
to Cobb-Douglas

 › Data requirements: requires more data for accurate estimation

Constant elasticity of substitution (CES) production function

The CES production function is another flexible form that allows for a constant but not necessarily unitary elasticity of substitution between 
inputs. It is given by:

Y = A[δN−ρ + (1−δ)K−ρ]−  σρ

Where A  is a scale parameter, δ  represents the distribution parameter between inputs, ρ  is a parameter related to the elasticity of 
substitution (σ), and σ =  1

1+ρ  is the elasticity of substitution between labour and capital. The CES function can represent a range of 
substitution possibilities, from perfect substitutes (σ = ∞) to perfect complements (σ = 0). This flexibility makes the CES function suitable 
for analysing production processes where the ease of substituting between labour and capital is an important factor.

 › Advantages

 › Flexibility: can model a wide range 
of substitution possibilities

 › Applicability: suitable for various production processes

 › Disadvantages

 › Complexity: more complex than Cobb-Douglas
 › Estimation challenges: requires careful estimation 

of parameters
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4.7.2. Possible biases

72 Breunig, R., & Wong, M., Estimation of total factor productivity. Quantitative Tools for Microeconomic Policy Analysis, December 2005, pp. 195-214. https://researchportalplus.anu.edu.au/en/
publications/estimation-of-total-factor-productivity.
73 Van Beveren, I., Total Factor Productivity Estimation: A Practical Review, Journal of Economic Surveys, Vol. 26, No 1, February 2012, pp. 98-128. https://doi.org/10.1111/j.1467-6419.2010.00631.x.
74 See footnote 36 for Olley & Pakes (1996).
75 See footnote 64 for Rizov et al. (2013).
76 Baldoni, E., Coderoni, S., and Esposti, R., The Complex Farm-Level Relationship between Environmental Performance and Productivity: The Case of Carbon Footprint of Lombardy Farms, 
Environmental Science & Policy, Vol. 89, November 2018, pp. 73-82. https://doi.org/10.1016/j.envsci.2018.07.010; and Severini, S., Tantari, A., and Di Tommaso, G., The Instability of Farm 
Income. Empirical Evidences on Aggregation Bias and Heterogeneity among Farm Groups, Bio-Based and Applied Economics, April 13, 2016, pp. 63-81. https://doi.org/10.13128/BAE-16367.

In productivity estimation, understanding the distinction between 
endogeneity and bias is crucial. Endogeneity occurs when 
explanatory variables are correlated with the error term, often due 
to omitted variables, measurement errors or simultaneity. This 
can lead to bias, which refers to systematic errors in parameter 
estimates, resulting in inaccurate results. Addressing these issues 
is essential for accurate productivity analysis.

1) Simultaneity problem

The estimation of production functions often encounters the simul-
taneity problem, where farm productivity is both contemporaneously 
and serially correlated with input choices. This correlation arises 
because more productive farms may increase their inputs in 
response to higher current and anticipated future profitability.

 › Contemporaneous correlation: occurs when farms adjust their 
inputs, such as labour, to match current productivity levels.

 › Serial correlation: input decisions are influenced by productivity 
expectations based on past performance.

In a single input scenario, the bias is generally upward. However, in 
a multivariate context where multiple inputs like labour and capital 
are considered, the direction of bias becomes indeterminate. For 
instance, if labour and capital are positively correlated, but labour 
has a stronger correlation with the productivity term, the estimated 
coefficient for labour is likely to be overstated, while that for capital 
is understated 72.

2) Omitted prices problem

When estimating productivity using revenue data instead of 
actual physical output, unobserved price variations can introduce 
significant errors. Revenue data may not accurately reflect the 
actual volume of production due to price fluctuations that are not 
controlled for in the model. Consequently, these unaccounted price 
effects can systematically bias the estimated coefficients, leading 
to distorted productivity estimates. Essentially, the model may 
attribute changes in revenue to changes in productivity when, in 
fact, they are due to price variations, thus misleading the analysis 73.

3) Transmission problem

The transmission problem refers to the issue that arises when 
unobservable productivity drivers influence the level of inputs a 
farm uses and the output it produces. This correlation between the 
unobserved productivity and the observed inputs leads to biased 
production function estimates if standard estimation techniques 
are used without addressing this endogeneity issue. Essentially, 
farms may adjust their input levels based on their productivity, 
which is not directly observable to researchers, thus complicating 
the accurate estimation of TFP 74.

4) Selection bias

This bias arises when only surviving farms are included in the 
estimation, ignoring those that have exited the market. It generally 
leads to a downward bias in the capital coefficient, as farms with 
lower productivity are more likely to exit 75.

5) Aggregation biases

Aggregation bias refers to the discrepancy between macro-
level parameters and the average of micro-level parameters or 
considering a function like a generalisation of the whole sample 
without considering differences between the groups of farms 
(e.g. type of farmers). Aggregating from micro-level production 
functions to an aggregate production function often requires 
assumptions that may not hold, such as identical production 
functions across units, leading to potential biases.

Another case of aggregation bias can arise when the data analysis 
is conducted at a macro level using micro level data (aggregation of 
individual FADN data into national data). For this reason, we must be 
very careful when carrying out these operations, trying to maintain 
the representativeness of the sample 76.

https://researchportalplus.anu.edu.au/en/publications/estimation-of-total-factor-productivity
https://researchportalplus.anu.edu.au/en/publications/estimation-of-total-factor-productivity
https://doi.org/10.1111/j.1467-6419.2010.00631.x
https://doi.org/10.1016/j.envsci.2018.07.010
https://doi.org/10.13128/BAE-16367
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Annex 5 Further details on sustainable productivity

77 Färe, R., and Grosskopf, S., Intertemporal Production Frontiers: With Dynamic DEA, Springer Netherlands, Dordrecht, 1996. https://doi.org/10.1007/978-94-009-1816-0.
78 Murty, S., and Russell, R.R., Bad Outputs, in S.C. Ray, R. Chambers, and S. Kumbhakar (eds.), Handbook of Production Economics, Springer Singapore, Singapore, 2020, pp. 1-53. https://doi.
org/10.1007/978-981-10-3450-3_3-1.
79 The materials balance principle is a fundamental concept in environmental economics and industrial ecology. It states that for any production process, the mass of inputs must equal the mass 
of outputs, considering both products and waste. This principle is rooted in the law of conservation of mass, which asserts that matter cannot be created or destroyed in an isolated system.
80 Dakpo, K.H., Jeanneaux, P., and Latruffe, L., Modelling Pollution-Generating Technologies in Performance Benchmarking: Recent Developments, Limits and Future Prospects in the Nonparametric 
Framework, European Journal of Operational Research, Vol. 250, No 2, 2016, pp. 347-359. https://doi.org/10.1016/j.ejor.2015.07.024.
81 Henningsen, A., Czekaj, T.G., Forkman, B., Lund, M., and Nielsen, A.S., The Relationship between Animal Welfare and Economic Performance at Farm Level: A Quantitative Study of Danish Pig 
Producers, Journal of Agricultural Economics, Vol. 69, No 1, February 2018, pp. 142-162. https://doi.org/10.1111/1477-9552.12228.
82 Zhou, P., Ang, B.W., and Poh, K.L., A Survey of Data Envelopment Analysis in Energy and Environmental Studies, European Journal of Operational Research, Vol. 189, No 1, August 2008, 
pp. 1-18. https://doi.org/10.1016/j.ejor.2007.04.042.

Annex 5 complements Chapter 4.3 of the guidelines on total 
indicators in relation to sustainable productivity. It explains the 
approaches to account for environmental and social impacts into 
a productivity assessment, using a modelling framework. It consists 
of three parts.

Annex 5.1 offers a definition of the production technology that takes 
into account both the environmental and the social dimensions.

Annex 5.2 presents an overview of the approaches incorporating 
environmental impacts into traditional production theory 
(description of single-equation and multi-equation frameworks).

Annex 5.3 goes further to present possible methods for measuring 
sustainable productivity based on the technology modelling of 
Annex 5.2, including descriptions, data needs, methodological steps, 
how to read the results and a list of advantages and disadvantages 
of each method.

Annex 5 is useful for experienced evaluators with technical 
knowledge, who can obtain more details on formulas that can be 
used and their differences, as well as data required to better prepare 
for evaluations of sustainable productivity.

5.1. Definition of the production technology accounting for economic, 
environmental and social dimensions
A proper measurement of sustainable productivity must account for 
standard marketed inputs and outputs, as well as non-priced inputs 
and outputs. Therefore, a new definition of production technology 
to account for both the environmental and the social dimensions 
is required.

Moreover, the technology representation can also be expanded to 
account for flows in all types of capital. For instance, in the case of 
natural capital, resource depletion can be explicitly included.

A certain number of standard properties are assumed for the 
production technology 77. Nevertheless, additional properties will 
be provided depending on how some outputs, especially bad/
undesirable outputs, are considered. To this aim, we define the 
concepts of rival and joint outputs 78.

Rival outputs are such that a given amount of input is allocated 
to produce them. Therefore, given that the inputs are divided 
among the outputs, the relation between rival outputs is negative. 
Consider, for instance, a crop farm that produces wheat and barley. 
If, for example, some of the inputs (land, fertilisers, labour, etc.) 
are diverted towards producing more wheat, then fewer inputs 
are available for producing barley, so its production level will 
therefore decrease.

Joint outputs imply that the same amount of inputs is available for 
all the outputs. This means that inputs are not allocated to producing 
one output to the detriment of the other. Therefore, there is a positive 
correlation between outputs in this category. This assumption is 
usually assumed when modelling by-products or pollution in the 
technology. This assumption is at the core of several models of 
pollution-generating technologies and is believed to be in line 

with the materials balance principle 79 – thermodynamics law 80. 
Consider the case of methane emission from enteric fermentation. 
Animals are used to produce milk, but they also generate methane 
from their biological processes. Therefore, animals (herd size) 
simultaneously generate milk and CH4. In this case, milk production 
and CH4 are positively correlated.

Based on the previous definitions, for any farm, the undesirable 
outputs are joint with the economic outputs. Moreover, all the 
good outputs are rivals (economic, social and good environmental 
outputs). However, diversion from the latter assumption can be 
observed in practice e.g. animal welfare 81. In the case of animal 
welfare, at extremely low levels, animals endure significant suffering 
(e.g. due to inadequate space, care, feed and veterinary services), 
leading to poor economic performance (e.g. due to sickness and high 
mortality). As animal welfare improves, the benefits of increased 
output (e.g. higher growth rates, better reproduction and lower 
mortality) outweigh the costs of increased inputs (e.g. more space, 
better care, improved veterinary services), resulting in enhanced 
economic performance up to a maximum point. This example shows 
a positive relationship between animal welfare and economic 
outputs. It does not assume any relation between the social and 
the good environmental outputs with the desirable outputs. Many 
of these relations can be tested empirically.

The most notable difference between the different output types 
comes from the jointness of the undesirable outputs with the 
economic outputs. Therefore, in the following sub-section, 
an overview is presented of the approaches incorporating 
environmental impacts into traditional production theory 82.

https://doi.org/10.1007/978-94-009-1816-0
https://doi.org/10.1007/978-981-10-3450-3_3-1
https://doi.org/10.1007/978-981-10-3450-3_3-1
https://doi.org/10.1016/j.ejor.2015.07.024
https://doi.org/10.1111/1477-9552.12228
https://doi.org/10.1016/j.ejor.2007.04.042


PAGE 37 / MARCH 2025

5.2. Review of approaches for modelling pollution-generating technologies

83 Førsund, F.R., Multi-Equation Modelling of Desirable and Undesirable Outputs Satisfying the Materials Balance, Empirical Economics, Vol. 54, No 1, February 2018, pp. 67-99. https://doi.org/10.1007/
s00181-016-1219-9.
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doi.org/10.2307/1244449.
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ejor.2017.10.033; and Yang et al. (2010).
88 See footnote 80 for Dakpo et al. (2016) for an extensive discussion of the limits of the WDA in the case of DEA.
89 Lauwers, L., Justifying the Incorporation of the Materials Balance Principle into Frontier-Based Eco-Efficiency Models, Ecological Economics, Vol. 68, No 6, April 2009, pp. 1605-1614. https://doi.
org/10.1016/j.ecolecon.2008.08.022.
90 Kuosmanen, T., and Kortelainen, M., Measuring Eco-efficiency of Production with Data Envelopment Analysis, Journal of Industrial Ecology, Vol. 9, No 4, October 2005, pp. 59-72. https://doi.
org/10.1162/108819805775247846; Kuosmanen, T., Measurement and Analysis of Eco-efficiency: An Economist’s Perspective, Journal of Industrial Ecology, Vol. 9, No 4, February 2008, pp. 15-18. 
https://doi.org/10.1162/108819805775248025.
91 Generally speaking, the decoupling index quantifies the extent to which economic growth is separated from environmental pressure. It indicates how effectively an economy can increase its 
output or income while reducing the negative environmental impacts associated with that growth.
92 Applications of the eco-efficiency models can be found in: Baráth, L., Bakucs, Z., Benedek, Z., Fertő, I., Nagy, Z., Vígh, E., Debrenti, E., and Fogarasi, J., Does Participation in Agri-Environmental 
Schemes Increase Eco-Efficiency?, Science of The Total Environment, Vol. 906, January 2024. https://doi.org/10.1016/j.scitotenv.2023.167518; Eder, A., Salhofer, K., and Scheichel, E., Land Tenure, 
Soil Conservation, and Farm Performance: An Eco-Efficiency Analysis of Austrian Crop Farms, Ecological Economics, Vol. 180, February 2021. https://doi.org/10.1016/j.ecolecon.2020.106861; 
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Vol. 92, No 4, April 2011, pp. 1154-1164. https://doi.org/10.1016/j.jenvman.2010.11.025; Picazo-Tadeo, A.J., Beltrán-Esteve, M., and Gómez-Limón, J.A., Assessing Eco-Efficiency with Directional Distance 
Functions, European Journal of Operational Research, Vol. 220, No 3, August 2012, pp. 798-809. https://doi.org/10.1016/j.ejor.2012.02.025; and Picazo-Tadeo, A.J., Castillo-Giménez, J., and Beltrán-
Esteve, M., An Intertemporal Approach to Measuring Environmental Performance with Directional Distance Functions: Greenhouse Gas Emissions in the European Union, Ecological Economics, 
Vol. 100, April 2014, pp. 173-182. https://doi.org/10.1016/j.ecolecon.2014.02.004.

There are two prominent families of pollution-generating 
technologies modelling. The first family is the single-equation 
framework and the second is the multi-equation framework. 
The single equation representation contains the most popular 
approaches for including undesirable outputs in the production 
technology, namely treating by-products as an additional input or 
undesirable output variable under the famous weak disposability 
assumption (WDA) (see definition below). Because of the assumption 
of undesirable outputs being joint outputs to the economic ones, 
models that treat these by-products as standard output (then rival) 
are excluded from this review. As underlined by Førsund 83, under this 
rivalry property, in addition to the counterintuitive trade-off between 
bad outputs and economic outputs – which can only be increased 
(decreased) by decreasing (increasing) bads for a constant level of 
inputs – all inputs can be allocated to the production of all the other 
outputs, and the level of bad outputs will simply be zero, without 
any additional costs.

5.2.1. Single-equation framework

 › Treating by-products as input

Under this approach, the positive correlation between by-products 
and economic outputs is maintained. Moreover, for the advocates 
of this approach, reducing by-products “requires the diversion of 
inputs from the production of desirable outputs, for abatement 
purposes; i.e. it requires the use of additional inputs or sacrifice of 
desirable outputs. Therefore, pollutants can essentially be treated 
as inputs into the production process” 84. There exists a plethora of 
studies that treat by-products as input 85.

 › Treating by-products as output under the WDA

The WDA implies that any reduction in the level of the by-products 
must also be accompanied by a decrease in the level of the economic 
outputs; therefore, reducing by-products is costly 86. Like in the case 
where by-products are treated as input, the WDA approach has met 
considerable success in the literature 87.

Despite their appealing nature, both above approaches have severe 
limitations regarding relations between the different variables 
involved in the production process, violating basic properties of the 
materials balance principle. For instance, in the model where by-
products are treated as input, there is a counterintuitive negative 
relation between by-products and inputs that generate them. The 
WDA also generates inconsistent trade-offs between by-products 
and inputs/economic outputs 88.

Within the single-equation family, a branch of approaches redefined 
the production technology to measure eco-efficiency (frontier eco-
efficiency models as classified by Lauwers) 89. The idea of these 
new models is to relate indicators of environmental pressures to 
economic values (e.g. value-added) 90. Eco-efficiency is examined 
through the ratio of the economic value of goods and services 
produced to environmental pressures. An example of such a ratio 
at the macro level is GDP per CO2 emissions. As such, the eco-
efficiency is related to the decoupling index 91. An advantage of 
this approach is that it does not require data on inputs. This could 
also be considered a limit of the approach as it does not show how 
by-products are generated nor how inputs like natural capital 
contribute to the economic outputs 92.
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5.2.2. Multi-equation framework
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State-Contingent Outputs, European Review of Agricultural Economics, Vol. 41, No 3, July 1, 2014, pp. 485–509. https://doi.org/10.1093/erae/jbu018; Dakpo, K.H., and Lansink, A.O., Dynamic Pollution-
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97 Coelli et al. (2007); and Hoang, V.-N., and Alauddin, M., Input-Orientated Data Envelopment Analysis Framework for Measuring and Decomposing Economic, Environmental and Ecological 
Efficiency: An Application to OECD Agriculture, Environmental and Resource Economics, Vol. 51, No 3, March 2012, pp. 431-452. https://doi.org/10.1007/s10640-011-9506-6.

Recently, an alternative approach that overcomes the limits of 
the single-equation framework has been suggested by Førsund 
and Murty et al. 93, where the ‘by-production’ is a multi-equation 
framework. The philosophy of this approach goes beyond the 
standard single relation to represent technologies by assuming 
multiple relations. In the simple case, one relation describes the 
production of the economic outputs, and a second relation describes 
the mechanisms of pollution generation. For the operationalisation 
of this approach, inputs are split into two categories: those that 
do not generate by-products (service inputs) and those that do 
(materials inputs).

Here, the by-production representation of the technology implies 
that the overall technology lies at the intersection of two sub-
technologies: one for the good outputs and the other for the bad 
outputs.

Figure 2. The by-production representation
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Source: adapted from Dakpo et al. (2017) 94

In this representation, we assume that natural and social capital do 
not generate any by-products (other assumptions can be imposed). 
Moreover, the model can be generalised to more than two sub-
technologies. Nevertheless, this requires a good knowledge of the 
systems being represented/evaluated.

Several studies considered the by-production approach auspicious 
for modelling pollution-generating technologies by providing 
proper trade-offs between variables and being compatible with the 
materials balance principle 95. In addition, by-production is getting 
widely used in many empirical applications 96. A practical challenge 
with the by-production approach is rigorously separating inputs into 
polluting and non-polluting categories, which requires a thorough 
understanding of the production technology and the methods used 
to obtain environmental variables.

A somewhat transversal family of approaches directly uses the 
materials balance principle (MBP). The MBP is based on the first law 
of thermodynamics related to the mass conservation. In other words, 
the total mass in inputs must equal the mass of the desirable outputs 
plus the residuals (by-products) mass. Based on this definition, the 
MBP overlooks non-material inputs/outputs.

It is worth noting that for non-material outputs (social outputs), 
their mass contents equal zero. The MBP fits the nutrient balance 
examination 97. The first advantage of the MBP is that it is neither 
an input nor an output, and its implementation does not require the 
introduction of extra variables (by-products z) in the modelling of the 
technology. Therefore, the positive correlation (jointness property) 
between by-products and economic outputs, which is at the core 
of all the previous approaches, is avoided here. By-products are 
reduced by minimising the balance equation. It operates similarly 
as a cost minimisation objective (iso-cost lines), estimating iso-
environmental lines as in the next figure.
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Figure 3. Iso-cost and iso-environmental lines
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Development and Sustainability, Vol. 25, No 3, March 2023, pp. 2670-2687. https://doi.org/10.1007/s10668-022-02156-2.

A second advantage of the MBP is that it does not exclude 
situations where minimising by-products might also be cost-
reducing, reflecting a win-win strategy 98. The MBP approach has its 
limitations. It primarily concentrates on material inputs, neglecting 
any potential interactions between material and non-material 
inputs. Consequently, this method may classify DMUs that use 
minimal material inputs as environmentally efficient (minimum level 
of undesirable outputs), even if they heavily depend on non-material 
inputs 99. In addition, one can add the lack of universally accepted 
weights for different material inputs and multiple by-products 100. 
Since the mass balance equation is an accounting identity, it does 
not explicitly show how by-products are generated. Finally, a recent 
extension of the MBP approach to the dynamic framework has 
been proposed by Kuosmanen and Kuosmanen 101, who suggested 
considering stocks rather than flows, the same way capital stocks 
fluctuate with (dis)investment flows.

Several empirical studies have also applied and extended the 
materials balance approach for environmental analysis in the 
agricultural sector 102.
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103 See footnote 92 for Kortelainen (2008).
104 O’Donnell, C.J., Measuring and Decomposing Agricultural Productivity and Profitability Change*, Australian Journal of Agricultural and Resource Economics, Vol. 54, No 4, October 2010, pp. 527-
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105 O’Donnell, C.J., Productivity and Efficiency Analysis: An Economic Approach to Measuring and Explaining Managerial Performance, Springer Singapore, Singapore, 2018. https://doi.
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107 See footnote 92, for Kortelainen (2008).
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109 See footnote 105 for O’Donnell (2018).

We present here some possible methods for measuring sustainable productivity, based on technology modelling explained in the previous section.

5.3.1. Eco-productivity indices

Description

The eco-productivity index, which, by extension, is also called the 
decoupling index, is defined as the ratio of aggregated economic, 
environmental and social outputs (desirable outputs) to the 
aggregated value of by-products. It allows comparisons between 
farms and between different periods.

This ratio is defined similarly to the traditional TFP, which is the ratio 
of an output index to an input index. Therefore, several methods 
can be used to estimate the eco-productivity index, similar to the 
estimation of TFP.

 › If price information is available for all the outputs, price-based 
indices like Laspeyres, Paasche, Fisher, Lowe, and Geometric 
Young can be used.

 › If price information is not available for non-marketed outputs, 
estimation techniques can be used to compute the index, such as:

 › The Malmquist index suggested by Kortelainen 103 
to measure eco-productivity. It also allows for some 
economically meaningful productivity decompositions, 
most notably into separate measures of efficiency change 
and technical change.

 › The Hicks-Moorsteen index using DEA models suggested 
by O’Donnell 104. It is an improvement of the Malmquist index 
which lacks multiplicative completeness (ratio of an output 
to an input).

 › A range of indices suggested by O’Donnell 105, that allow 
comparison in time and space and satisfy the transitivity 
property, which implies that comparisons between two 
observations do not change when they are compared 
indirectly via a third one 106. They are an improvement 
of the Malmquist and the Hicks-Moorsteen indices, 
which do not satisfy the transitivity property.

Data sources and requirements

The estimation of the eco-productivity index requires information 
on outputs for all the three dimensions of sustainability: economic, 
environmental and social. No input information is necessary for 
computing this index. In addition to this, the requirements are similar 
to the case of the traditional TFP indices measure.

Methodological steps

We define the eco-productivity index that compares, for instance, 
farm i in period t to farm k in period s as:

ECO (yit, bit, yks, bks ) = 
GI (yit, yks)
BI (bit, bks)

This ratio is similar to traditional TFP, which is the ratio of an output 
index to an input index. However, in this case, the output index 
represents good outputs (GI  ), while the input index represents bad 
outputs (BI  ). Therefore, several methods can be used to estimate 
the eco-productivity index, similar to the estimation of TFP. If price 
information is available for all the outputs, price-based indices like 
Laspeyres, Paasche, Fischer, Lowe, and Geometric Young can be 
used. Unfortunately, these prices are generally unavailable for social 
outputs and by-products. In the literature, only the economic output is 
considered in the numerator of the eco-productivity index but the index 
can take on the philosophy of the standard eco-productivity index by 
linking three output types: economic, environmental and social. One 
might even call it the eco-socio-productivity index. It is worth noting 
that, rigorously speaking, the eco-socio-productivity index is not a TFP 
index, as inputs are not considered in its estimation. Nevertheless, it 
provides crucial insights into how the three output types are related.

As price information is unavailable for non-marketed outputs, 
estimation techniques can be used to compute the index. 
Regarding eco-productivity, Kortelainen 107 suggested using the 
Malmquist index. The Malmquist index is based on Shephard’s 
distance functions. These distance functions can be estimated 
using the non-parametric DEA or the parametric SFA. The Malmquist 
index also allows for some economically meaningful productivity 
decompositions, most notably into separate measures of efficiency 
change and technical change. However, O’Donnell 108 criticised the 
Malmquist index for its lack of multiplicative completeness (ratio of 
an output to an input) and suggested the Hicks-Moorsteen index 
estimated using DEA models. Nor does the Malmquist nor the Hicks-
Moorsteen index satisfy the transitivity property, which implies that 
comparisons between two observations do not change when they 
are compared indirectly via a third one. Therefore, O’Donnell 109 
discussed a new range of indices that allow comparison in time 
and space without violating the transitivity property. These indices 
can be additive or multiplicative using fixed weights (shadow prices, 
shadow value shares) or based on the benefit-of-the-doubt, which 
uses variable weights while still satisfying the transitivity property.
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Economics, Vol. 48, No 1, January 2004, pp. 37-47. https://doi.org/10.1016/j.ecolecon.2003.08.003.
111 Abad, A., An Environmental Generalised Luenberger-Hicks-Moorsteen Productivity Indicator and an Environmental Generalised Hicks-Moorsteen Productivity Index, Journal of Environmental 
Management, Vol. 161, September 2015, pp. 325-334. https://doi.org/10.1016/j.jenvman.2015.06.055.
112 Dakpo, K.H., Jeanneaux, P., and Latruffe, L., Pollution-Adjusted Productivity Changes: Extending the Färe�Primont Index with an Illustration with French Suckler Cow Farms, Environmental 
Modeling & Assessment, Vol. 24, No 6, December 1, 2019, pp. 625-639. https://doi.org/10.1007/s10666-019-09656-y.
113 O’Donnell, C., How to Build Sustainable Productivity Indexes, CEPA Working Papers Series WP102022, School of Economics, University of Queensland, Australia, 2022. https://ideas.repec.org/p/
qld/uqcepa/182.html; and Cobourn, K., O’Donnell, C., Antón, J., Henderson, B., An Index Theory Based Approach to Measuring the Environmentally Sustainable Productivity of Agriculture, OECD 
Food, Agriculture and Fisheries Papers Working Papers, No.213, Paris, 2024. https://doi.org/10.1787/bf68fb78-en.

A value greater than 1 indicates that eco-productivity of farm i in period t has increased compared to farm k in period s, while a value less 
than 1 indicates a decline in eco-productivity.

Table 12. Advantages and disadvantages

Pros Cons

Easy to understand

In the case where economic and environmental ‘bads’ are 
considered, the index can be related to a decoupling index.

Data requirement

Requires data on prices and quantities of all outputs, 
which may be challenging for some agricultural products.

Easy to calculate

In single-output cases, the eco-productivity is very easy to 
compute as it does not require any price or weight information.

Shadow price or weight computation

As market prices are generally not available for environmental 
outputs, these need to be estimated (shadow prices or weights) 
using an appropriate representation of the production 
technology.

Beyond economics

This index can be related to a decoupling index, a notion used 
in climate science.

Partiality

The eco-productivity index does not involve information 
on inputs. Therefore, it provides a partial view of 
the production processes.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)

5.3.2. Environmentally-adjusted productivity indices

Description

There has been an evolution in the development of productivity indices that take into account environmental performance. This annex offers 
the technical details for these indices, as well as their limitations that have led to their improvements. Here, the indices are presented in an 
order which shows their evolution from the simplest to the most advanced/improved.

 › The environmentally-adjusted productivity (EAP) index of Färe et al. and Zaim 110. It is the ratio of a quantity index of desirable outputs and 
a quantity index of undesirable outputs (by-products).

 › A new class of EAP, as suggested by Abad 111, defined as the ratio of a quantity index of desirable outputs and a quantity index of both 
inputs and undesirable outputs (by-products).

 › An alternative version of the Abad productivity index based on the by-production approach, suggested by Dakpo et al. 112. It is defined as 
the ratio of a quantity index of desirable outputs and a quantity index of both service inputs and undesirable outputs (by-products), and 
in this way it overcomes the double accounting of material inputs.

 › The sustainable productivity index, or sustainability index (SI) for all inputs and outputs, as recently suggested by O’Donnell and Cobourn 
et al. 113. It measures the changes in the volume of rival outputs, the changes in the volume of the by-products, and the changes in the 
volume of inputs. A novelty of this sustainable TFP index is that it takes into account the preferences of the decision-maker.

https://doi.org/10.1016/j.reseneeco.2003.10.003
https://doi.org/10.1016/j.ecolecon.2003.08.003
https://doi.org/10.1016/j.jenvman.2015.06.055
https://doi.org/10.1007/s10666-019-09656-y
https://ideas.repec.org/p/qld/uqcepa/182.html
https://ideas.repec.org/p/qld/uqcepa/182.html
https://doi.org/10.1787/bf68fb78-en
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Data sources and requirements

114 See footnote 110 for the full reference on Fare et al. (2004) and Zaim (2004).
115 See footnote 111 for Abad (2015).
116 See footnote 112 for Dakpo et al. (2019).
117 See footnote 113 for O’Donnell (2022).

Computing an environmentally-adjusted TFP requires the most complete set of data. In addition to the requirements of the standard TFP 
indices, information on non-marketed outputs like ‘bads’ and social outcomes is necessary.

Methodological steps

Like the eco-productivity index, Färe et al. and Zaim 114 suggested an environmental performance index, which is the ratio of a quantity index 
of desirable outputs and a quantity index of undesirable outputs (by-products). The main difference between this environmentally-adjusted 
productivity (EAP) index and the eco-productivity index is that all variables, including inputs, are considered when calculating the EAP indices. 
Färe et al., in their modelling of the production technology, assumed the WDA for the by-products. The limits of this approach have been 
extensively discussed in the literature. Nevertheless, the index can be calculated by representing the technology as in the by-production 
approach. The productivity index EAP can be obtained as:

where

and

Dy and Db are distance functions that can be obtained using the DEA representation of the by-production approach. y0, b0, x0 are given 
vectors of desirable and undesirable outputs and inputs, respectively. The EAP index satisfies a bunch of index number axioms, including 
transitivity. As pragmatic as this new index can be, one may still wonder if it is a TFP index, as no index related to the inputs appears in the 
formulation.

As a solution, Abad 115 suggested a new class of EAP defined as the ratio of a quantity index of desirable outputs and a quantity index of both 
inputs and undesirable outputs (by-products). The new index can be written as:

Unfortunately, in that study, the WDA is maintained for the by-products. Dakpo et al. 116 recently suggested an alternative version of this 
productivity index based on the by-production approach. Moreover, to overcome the double accounting of material inputs, they define the 
productivity index as the ratio of a quantity index of desirable outputs and a quantity index of both service inputs and undesirable outputs 
(by-products):

O’Donnell 117 suggested a sustainability index for all inputs and outputs. The sustainable productivity index, or sustainability index (SI), is 
defined as:
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Where GI  is an index that measures the changes in the volume of rival outputs, BI  is an index that measures the changes in the volume of 
the by-products and XI  is a volume input index. A novelty of this sustainable TFP index is the inclusion of the (decision-maker’s) preference 
parameter η ∈ [0,1] which gives weight to the by-products index. When η = 0 the decision-maker ignores the by-products, and the SI  
collapses to the traditional TFP index. Conversely, when η = 1 the economic and social outputs are ignored. The weights used to estimate 
GI, BI and XI can be obtained either as the shadow normalised prices obtained using proper modelling of the technology or by using the 
benefit-of-doubt approach. The preference parameter η can be econometrically estimated using the equation:

118 Ibid.

How to read the results

A value greater than 1 indicates that the environmentally-adjusted-productivity of farm i in period t has increased compared to farm k in 
period s, while a value less than 1 indicates a decline in eco-productivity.

Table 13. Advantages and disadvantages

Pros Cons

Complete picture

By considering all variables involved in the production process, 
the environmentally (and socially) adjusted TFP provides a more 
complete picture of sustainable productivity.

Complexity

Requires an adequate modelling of pollution-generating 
technology. The by-production approach advocated here 
is based on the estimation of multiple sub-technologies 
rather than one in the standard approaches.

Policy-maker preferences

The sustainable productivity index suggested by O’Donnell 118 
allows the inclusion of the policymaker’s preferences by 
choosing the weight given to the ‘bad’ and the good output 
indices. This might provide insightful information, especially 
when comparing different countries.

Shadow price or weight computation

As market prices are generally unavailable for environmental 
outputs, these need to be estimated (shadow prices), which 
adds more complexity to the estimation.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)
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Annex 6 Methods for assessing the CAP impact on productivity 
scores observed
Annex 6 complements Chapter 5 of the guidelines on methods for 
assessing the CAP impact on sustainable productivity. The different 
methods recommended are described in detail in this Annex. 
The description includes a technical explanation (with relevant 
formulas), methodological steps for implementing each method and 
examples of application, suggestions for software implementation 

in carrying out the estimation, as well as the advantages and 
disadvantages of each method.

Annex 6 is useful for evaluators familiar with advanced methods for 
assessing CAP impacts.

6.1. Details on propensity score matching
Propensity score matching (PSM) is a counterfactual impact 
evaluation (CIE) method. PSM is a statistical technique used to 
estimate the causal effect of a treatment (e.g. a specific CAP 
intervention) on an outcome (e.g. productivity) by accounting for the 
non-random assignment of treatments. This method is particularly 
useful in observational studies where a random assignment is not 
feasible. PSM aims to create a balanced comparison group that 
mimics the characteristics of the treatment group, thereby reducing 
selection bias.

6.1.1. Technical explanation

The propensity score is calculated using a logistic regression model 
or similar statistical models, where the probability of receiving the 
treatment is modelled as a function of observed variables. These 
covariates are characteristics of the DMUs (e.g. regions, individuals) 
that are believed to influence both the likelihood of receiving the 
treatment and the outcome of interest. The general form of the 
logistic regression model for calculating the propensity score is:

logit[P (D = 1 | X )] = β0 + β1X1 + β2X2 + … + βkXk

Where

 › D (T = 1 | X ) is the probability of receiving the treatment 
given covariates X

 › D is the treatment assignment (1 if treated, 0 if not treated)

 › X1, X2, … , Xk are the covariates

 › β0, β1, β2, β3, … , βk are the coefficients

The logit function is the natural log of the odds ratio of receiving 
the treatment and the model estimates the coefficients β that 
best predict the probability of treatment assignment based on the 
covariates. Once the model is estimated, the propensity score for 
each DMU is the predicted probability of receiving the treatment, 
calculated by plugging the observed covariates into the model.

When evaluating the CAP’s impact, the treatment generally 
refers to a specific CAP measure and the covariates could include 
characteristics that influence both the selection into a particular 
policy mix and the outcomes of interest (e.g. UAA, type of crop 
produced and fixed capital). Using covariates in propensity score 
calculations can help account for the non-random assignment of 
the CAP treatment across farms, allowing the estimation of the 
causal impact of the CAP measure on the outcomes, while reducing 
selection bias. The calculated propensity scores are then used in 
subsequent analyses to adjust for the non-random assignment of 
the treatment and estimate its causal impact on the outcomes.

Methodological steps for implementing propensity 
score matching

Define the objective and select units

Clearly define the objective of the study and select the farms (all 
farms of the sample or specific samples based on the farm’s type 
of farming, altimetric zone, etc.) to be analysed.

Select covariates and collect data

Identify and collect data on covariates that influence both the 
likelihood of receiving the treatment and the outcome of interest. 
Common data sources include FADN individual farm data sets, 
national statistical agencies, and other relevant databases.

Estimate propensity scores

A logistic regression model will be used to estimate the propensity 
scores. The model should include all relevant covariates. The general 
form of the logistic regression model is:

logit[P (D = 1 | X )] = β0 + β1X1 + β2X2 + … + βkXk
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Choose a matching algorithm

Select an appropriate matching algorithm to match treated units 
with control units based on their propensity scores. Common 
matching methods include the following.

 › Nearest neighbour matching (NNM) matches each treated unit 
to one or more untreated units with the closest propensity score.

 › Calliper matching adds a restriction on the maximum allowed 
distance between the propensity scores of the matched units.

 › Radius matching matches all untreated units within a specified 
radius of the propensity score of a treated unit.

 › Kernel matching uses a weighted average of all untreated units 
to construct the counterfactual outcome for each treated unit.

 › Stratification matching divides the range of propensity scores 
into intervals or strata and estimates the treatment effect within 
each stratum.

 › Optimal full matching forms matched sets that may include 
multiple treated and untreated units, minimising the total 
distance across all matches.

 › Coarsened exact matching (CEM) temporarily coarsens each 
observed variable into substantively meaningful groups and then 
performs exact matching on these coarsened data.

Assess matching quality

Evaluate the quality of the matching by checking the balance of 
covariates between the treated and control groups. This can be 
done using standardised bias, balancing property tests, and pseudo 
R² tests.

Estimate treatment effects

To estimate the treatment effects using PSM, calculate the average 
treatment effect (ATE) and average treatment effect on the treated 
(ATT) using the following formulas.

 › Average treatment effect (ATE)

 
 

where

1. N is the total number of units (both treated and control)

2. Yi
D=1 is the outcome for the treated unit i

3. Yi
D=0 is the outcome for the matched control unit i

 › Average treatment effect on the treated (ATT)

 
 

where

1. ND is the number of treated units

2. Yi
D=1 is the outcome for the treated units i

3. Yi
D=0 is the outcome for the matched control units i

Perform sensitivity analysis

Conduct a sensitivity analysis to assess how robust the estimated 
treatment effects are to potential hidden biases.

Example of application

In the context of evaluating the impact of CAP measures on TFP, the 
following steps could be taken.

1. Objective: assess the impact of a specific CAP measure on TFP.

2. Units: select farms from the FADN database.

3. Covariates: include variables such as farm size, type of 
production, amount of UAA, level of mechanisation and livestock 
numbers.

4. Propensity scores: estimate propensity scores using a logistic 
regression.

5. Matching algorithm: use NMM with a calliper to ensure suitable 
matches.

6. Matching quality: check the balance of covariates between 
treated and control groups.

7. Estimate ATE: calculate the mean TFP for treated farms and the 
mean TFP for untreated farms. The difference between these 
means gives the ATE.

8. Sensitivity analysis: perform a sensitivity analysis to check the 
robustness of the results.

6.1.2. Estimation

Software Implementation: Implement the model using statistical 
software, such as R, Stata or MATLAB. These platforms offer 
packages and functions specifically designed for PSM (e.g. ‘MatchIt’ 
in R, ‘psmatch2’ in Stata).
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6.1.3. Advantages and disadvantages

Table 14. Pros and cons of PSM

Pros Cons

Reduces selection bias

PSM helps reduce selection bias by matching treated 
units with control units with similar characteristics. 
This is particularly useful in observational studies where 
a random assignment is not possible, such as evaluating 
the impact of CAP interventions on productivity.

Reliance on observed covariates

PSM can only control for observed covariates. If unobserved 
or unmeasured variables influence both the treatment 
assignment and the outcome, then PSM cannot account for 
these, potentially leading to biased results. This is a significant 
limitation in studies where not all relevant variables can be 
observed or measured.

Simplifies analysis

PSM simplifies the analysis by creating a matched sample 
that is balanced on observed covariates. It allows researchers 
to approximate a randomised controlled trial, making the 
comparison of treated and control groups more straightforward 
and focused on the treatment effect.

Matching quality depends on covariate choice

The success of PSM heavily depends on the choice and quality 
of covariates used to calculate the propensity score.

Improves causal inference

PSM enhances the credibility of causal inference by ensuring 
that the comparison between treatment and control groups 
is made on a like-for-like basis. This is crucial when assessing 
the impact of policy interventions like CAP interventions, 
where other confounding factors could affect productivity.

Does not guarantee balance

Achieving balance on all relevant covariates between treated 
and control groups can be challenging. Inadequate balance can 
still exist after matching, which might necessitate additional 
adjustments or more sophisticated matching algorithms, 
complicating the analysis.

Flexibility in matching

PSM offers various matching techniques (e.g. nearest neighbour, 
calliper matching), allowing researchers to choose the best 
method for their data structure and research objectives. This 
flexibility can help achieve a better balance and more precise 
estimates of treatment effects.

Loss of data

PSM often leads to a reduction in sample size because it only 
includes matched units in the analysis. This can result in a loss 
of valuable data, especially if many units do not find a suitable 
match, potentially affecting the study’s statistical power.

Complexity in implementation

Implementing PSM correctly requires careful consideration 
of various technical details, such as choosing an appropriate 
matching algorithm, deciding on the calliper width, and 
assessing the post-matching balance. These complexities might 
pose challenges, especially for researchers less familiar with 
the method.

Restriction on the applicability

It is necessary to have both treated and untreated farms. 
For example, if the treatment is decoupled payments, then 
this method cannot be used because the untreated subsample 
is empty.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)
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6.2. Details on difference-in-difference
Difference-in-difference (DiD) is a quasi-experimental design used to 
estimate causal relationships in observational studies. It compares 
the changes in outcomes over time between a treatment group 
(e.g. farms receiving a specific CAP measure) and a control group 
(e.g. farms not receiving the measure). The key assumption is that, 
in the absence of treatment, the average change in the outcome 
would have been the same for both groups.

6.2.1. Technical Explanation

The DiD estimator can be formally expressed as:

DiD = (ȲD=1,post - ȲD=1,pre) - (ȲD=0,post - ȲD=0,pre)

Where

 › ȲD=1,post is the average outcome for the treatment group 
after the intervention

 › ȲD=1,pre is the average outcome for the treatment group 
before the intervention

 › ȲD=0,post is the average outcome for the control group after 
the intervention

 › ȲD=0,pre is the average outcome for the control group before 
the intervention

In regression form, the DiD model can be specified as

Yit = α + β1Postd + β2 Treati + β3(Postd × Treati) + ϵit

Where

 › Yit is the outcome variable for unit i at time t

 ›  Postd is a binary indicator equal to 1 if the observation is in 
the post-treatment period, and 0 otherwise

 › Treati is a binary indicator equal to 1 if the unit is in the 
treatment group, and 0 otherwise

 › Postd × Treati is the interaction term between the post-
treatment period and the treatment group

 › β3 is the DiD estimator, capturing the treatment effect

 › ϵit is the error term

Methodological steps for Implementing DiD

Define the objective and select units

 › Objective: clearly define the objective of the study, such as 
assessing the impact of a specific CAP measure on farm 
productivity.

 › Select units: identify the farms to be analysed, ensuring a clear 
distinction between the treatment group (farms receiving the 
CAP measure) and the control group (farms not receiving the 
measure).

Select covariates and collect data

 › Identify covariates: identify and collect data on covariates that 
influence both the likelihood of receiving the treatment and 
the outcome of interest. Common data sources include FADN 
individual farm data sets, national statistical agencies, and other 
relevant databases.

 › Data collection: gather data on the outcome variable (e.g. TFP) 
and covariates for both pre-treatment and post-treatment 
periods.

Estimate the DiD model

 › Specify the model: formulate the DiD model described above, 
including the interaction term to capture the treatment effect.

 › Estimate the model: use statistical software (e.g. R, Stata) to 
estimate the DiD model. Ensure that the model includes fixed 
effects to control for time-invariant characteristics of the units.

Estimate treatment effects

 › Calculate DiD estimator: calculate the DiD estimator (β3) to 
determine the causal impact of the CAP measure on the outcome 
variable.

 › Interpret results: interpret the estimated treatment effect in the 
context of the study objective.

Perform sensitivity analysis

 › Robustness checks: conduct sensitivity analysis to assess the 
robustness of the estimated treatment effects to potential hidden 
biases. This may include placebo tests, varying the time periods, 
or using alternative matching algorithms.

Example of application

 › Objective: assess the impact of a specific CAP measure on TFP.

 › Units: select farms from the FADN database.

 › Covariates: include variables such as farm size, type of 
production, amount of UAA, level of mechanisation, and livestock 
numbers.

 › DiD model: estimate the DiD model using the specified covariates 
and interaction term.

 › Estimate treatment effect: calculate the mean TFP for treated 
farms and the mean TFP for untreated farms. The difference 
between these means gives the DiD estimator.

 › Sensitivity analysis: perform a sensitivity analysis to check the 
robustness of the results.

A specific example of the application of DiD is provided in the main 
text of the guidelines in Chapter 5 when discussing the method.
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6.2.2. Estimation

Software implementation: implement the model using statistical software such as R or Stata. These platforms offer packages and functions 
specifically designed for DiD (e.g. ‘did’ and ‘fixest’ in R, ‘diff’, ‘didregress’ and ‘xtreg’ in Stata).

6.2.3. Advantages and disadvantages

Table 15. Pros and cons of DiD

Pros Cons

Ability to control for unobserved Confounders

DiD is particularly effective in controlling for unobserved 
confounders that are constant over time. By comparing 
changes over time between treated and control groups, DiD can 
isolate the effect of the treatment from other factors that do not 
vary in the short term.

Parallel trend assumption

A critical assumption of the DiD method is that, in the absence 
of treatment, the treated and control groups would have 
followed parallel paths over time. Violation of this assumption 
can lead to biased estimates, making it crucial to test for 
parallel trends before applying DiD.

Utilisation of quasi-experiments

DiD is well-suited for exploiting quasi-experiments, where the 
treatment is not randomly assigned but occurs due to policy 
changes or other external factors. This makes it a powerful tool 
for evaluating the impact of policy measures like the Common 
Agricultural Policy (CAP) on productivity.

Sensitivity to external shocks

While DiD controls for time-invariant unobserved heterogeneity, 
it can still be biased by external shocks that differentially 
affect the treated and control groups during the study period. 
Identifying and accounting for such shocks can be challenging.

Simplicity and flexibility

The DiD approach is relatively straightforward to implement and 
can be adapted to various data structures and settings. It can 
handle different types of data and is compatible with both linear 
and non-linear models.

Limited to short-term effects

DiD is most effective for evaluating short-term effects, as it 
assumes that the treatment’s impact is captured within the 
study period. Long-term effects that evolve after the study 
period may not be accurately estimated.

Robustness to model specification

Since DiD focuses on changes over time rather than levels, it 
is less sensitive to model misspecification. This robustness 
enhances the reliability of the causal estimates derived from 
DiD analyses.

Requirement for data over time

DiD requires data from before and after the treatment for both 
treated and control groups. In many cases, especially for policy 
evaluations like those involving CAP interventions, obtaining 
suitable and comparable longitudinal data can be difficult.

Difficulty in identifying appropriate control groups

For policies like CAP, finding a control group that is unaffected 
by the policy yet similar in all other respects to the treated 
group can be challenging. This difficulty can compromise the 
validity of the DiD estimates.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)
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6.3. Details on ordinary least squares
Ordinary least squares (OLS) belong to the group of correlation static models. The goal of OLS is to assess the level of correlation between a 
dependent variable and one or more explanatory variables that, in our context, are productivity and level of the considered CAP interventions 
respectively. OLS is a method for estimating the parameters in a linear regression model by minimising the sum of the squared differences 
between the observed dependent variable and those predicted by the linear function of the explanatory variables. The OLS estimator is 
derived under the assumption that the error terms are normally distributed, homoscedastic (constant variance), and uncorrelated.

6.3.1. Technical Explanation

The general form of the OLS regression model is:

Y = X β + ϵ 

Where

 › Y is the dependent variable (e.g. productivity)

 › X is the matrix of explanatory variables (e.g. CAP measures, 
farm characteristics)

 › β is the vector of coefficients to be estimated

 › ϵ is the error term

The OLS estimator for β is given by

β = (X'X )−1X'Y 

This estimator is obtained by solving the normal equations

 X'X β = X'Y

Methodological steps for implementing OLS

Define the objective and select units

 › Objective: clearly define the objective of the study, such as 
estimating the impact of specific CAP measures on farm 
productivity.

 › Select units: choose the farms or regions to be analysed. This 
could involve selecting all farms or specific types of farming only, 
or particular altimetric zones.

Select covariates and collect data

 › Identify covariates: determine the covariates that influence both 
the likelihood of receiving the CAP treatment and the outcome of 
interest (e.g. farm size, type of production, amount of UAA, level 
of mechanisation and livestock numbers).

 › Data collection: collect data from sources such as the FADN, 
national statistical agencies, and other relevant databases.

Estimate the OLS model

 › Specify the model: formulate the linear regression model 
to include the dependent variable (e.g. productivity) and the 
explanatory variables (e.g. CAP measures, farm characteristics). 
The model can be specified as:  
 

Yi = β0 + β1X1i + β2X2i + … + βkXki + ϵi
  

 
 
where Yi is the productivity of farm i, X1i , X2i , … , Xki ,  
are the explanatory variables, and ϵi is the error term.

 › Estimate parameters: use statistical software (e.g. R, Stata, 
MATLAB) to estimate the parameters β using the OLS method.

Assess model

 › Check assumptions: verify the assumptions of the OLS model, 
including linearity, independence, homoscedasticity and 
normality of residuals.

 › Diagnostic tests: perform diagnostic tests such as the Breusch-
Pagan test for heteroscedasticity, the Durbin-Watson test 
for autocorrelation, and the variance inflation factor (VIF) for 
multicollinearity.

Estimate treatment effects

 › Calculate effects: estimate the treatment effects of CAP 
measures on productivity by interpreting the coefficients of the 
CAP-related variables in the regression model.

 › Interpret results: analyse the estimated coefficients to 
understand the magnitude and direction of the impact of CAP 
measures on farm productivity.

Perform sensitivity analysis

 › Robustness checks: conduct sensitivity analyses to assess 
the robustness of the estimated treatment effects. This may 
involve using alternative model specifications, different sets of 
covariates, or different subsamples of the data.
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Example of application

 › Objective: assess the impact of a specific CAP measure on TFP.

 › Units: select farms from the FADN database.

 › Covariates: include variables such as farm size, type of production, amount of UAA, level of mechanisation, and livestock numbers.

 › OLS model: estimate the OLS model using the specified covariates.

 › Estimation: calculate the correlation between TFP and the CAP measure.

 › Sensitivity analysis: perform sensitivity analysis to check the robustness of the results.

6.3.2. Estimation

Software Implementation: Implement the model using statistical software such as R or Stata. These platforms offer packages and functions 
specifically designed for OLS (e.g. ‘lm’ in R, ‘regress’ in Stata).

6.3.3. Advantages and disadvantages

Table 16. Pros and cons of OLS

Pros Cons

Simplicity and ease of use

OLS is straightforward to implement and interpret, 
making it accessible for researchers and policymakers.

Based on strong assumptions that may not hold

OLS relies heavily on its assumptions. The estimates can be 
biased and inefficient if these are violated (e.g. non-linearity, 
heteroscedasticity).

Efficiency under certain conditions

When the assumptions of OLS are met (linearity, 
no multicollinearity, homoscedasticity, and normality of 
errors), it provides the Best Linear Unbiased Estimator (BLUE), 
ensuring efficiency.

Susceptibility to outliers

OLS is sensitive to outliers, which can disproportionately 
influence the model estimates, leading to misleading results.

Widely available tools

OLS can be performed using a wide range of statistical software, 
making it widely accessible for analysis.

Limited to linear relationships

OLS is designed for linear relationships. If the true relationship 
between CAP interventions and productivity is non-linear, 
OLS may not capture the complexity of the relationship. 
However, the variables can, under some conditions, be 
transformed to accommodate non-linear relationships, 
for example, using squared or polynomial transformation.

Facilitates understanding of relationships

By estimating the coefficients of independent variables, 
OLS helps in understanding the direction and magnitude of 
the relationship between CAP interventions and productivity.

Potential for multicollinearity

In cases where independent variables are highly correlated, 
multicollinearity issues arise. This implies that OLS estimates 
can become unstable and lead to wrong interpretations 
of the results.

Good for predictive modelling

When the primary interest is in prediction, and the OLS 
assumptions are reasonably met, it can be a powerful tool 
for forecasting productivity based on CAP interventions.

Does not account for endogeneity

OLS cannot inherently address endogeneity issues. This latter 
arises when independent variables are correlated with the error 
term. Under this condition, estimates are biased and do not 
provide useful indications.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)
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6.4. Details on fixed effect
The fixed effect (FE) model is a statistical technique that also belongs 
to the group of correlation models. It shares some characteristics 
with the OLS but is more advanced.

FE is used to estimate the impact of variables that vary over time 
within a DMU (e.g. farm, region) while controlling for time-invariant 
characteristics of those DMUs. In contrast to OLS, this method can 
be applied if panel data are available because the same DMUs are 
observed over multiple time periods.

6.4.1. Technical explanation

The general form of the FE model can be expressed as:

Yit = αi + βXit + γt + ϵit

Where

 › Yit is the dependent variable (e.g. productivity) for DMU i at 
time t

 › αi represents the DMU-specific fixed effects, capturing time-
invariant characteristics of the DMUs

 › Xit is a vector of explanatory variables (e.g. CAP measures, input 
usage) that vary over time

 › β is the vector of coefficients for the explanatory variables

 › γt represents time fixed effects, capturing time-specific effects 
that are common across DMUs

 › ϵit is the error term

The FE model assumes that the DMU-specific effects (αi) are 
correlated with the explanatory variables Xit , which allows for 
controlling unobserved heterogeneity that could bias the estimates.

Methodological steps for implementing the FE model

Define the objective and select units

 › Clearly define the objective of the study, such as assessing the 
impact of specific CAP measures on farm productivity.

 › Select the units of analysis, which could be individual farms, 
regions or countries.

Select covariates and collect data

 › Identify and collect data on covariates that influence both the 
likelihood of receiving the CAP treatment and the outcome of 
interest (e.g. farm size, type of production, input usage).

 › Common data sources include FADN individual farm data sets, 
national statistical agencies, and other relevant databases.

Estimate the FE model

 › Specify the FE model, including the dependent variable 
(e.g. productivity) and explanatory variables (e.g. CAP measures, 
input usage).

 › Use statistical software (e.g. R, Stata) to estimate the model. The 
general form of the Fixed Effect model is:

Yit = αi + βXit + γt + ϵit

 › Ensure that the model includes DMU-specific fixed effects (αi ) 
and time fixed effects γt to control for unobserved heterogeneity 
and time-specific effects.

Assess model

 › Use diagnostic tests (e.g. Hausman test) to ensure the appro-
priateness of the fixed effect model over alternative models 
(e.g. random effect model).

Perform sensitivity analysis:

 › Use alternative model specifications and robustness checks to 
validate the findings.

Example of application

In the context of evaluating the impact of CAP measures on TFP, the 
following steps could be taken.

 › Objective: assess the impact of a specific CAP measure on TFP.

 › Units: select farms from the FADN database.

 › Covariates: include variables such as farm size, type of production, 
amount of UAA, level of mechanisation, and livestock numbers.

 › FE model: estimate the model using the specified covariates and 
include farm-specific and time fixed effects.

 › Model quality: check the R2, F-test.

 › Estimation: calculate the correlation between CAP measure 
and TFP.

 › Sensitivity analysis: perform a sensitivity analysis to check the 
robustness of the results.

6.4.2. Estimation

Software Implementation: Implement the model using statistical 
software such as R or Stata. These platforms offer packages and 
functions specifically designed for the fixed effect (e.g. ‘plm’ in R, 
‘xtreg’ in Stata).
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6.4.3. Advantages and disadvantages

Table 17. Pros and cons of panel fixed effects

Pros Cons

Control for time-invariant characteristics

The FE model effectively controls for all time-invariant 
characteristics of the entities (e.g. farms, regions), which could 
otherwise make the results biased. This is particularly useful 
in agricultural economics where unobserved heterogeneity 
(e.g. soil quality, climate) can significantly influence 
productivity.

Exclusion of time-invariant variables

One major limitation of the FE model is that it cannot estimate 
the effects of time-invariant variables (e.g. geographic 
characteristics, long-term soil quality) because these are 
absorbed by the fixed effects. This can be problematic if these 
variables are important determinants of productivity.

Focus on within-entity variations

By focusing on within-entity variations, the FE model isolates 
the impact of time-varying CAP interventions on productivity, 
providing a clearer picture of how changes in policy affect 
productivity over time within the same farm or region.

Potential bias in small panels

The FE estimator can suffer from bias, especially in small panels 
(small number of entities or time periods). This bias arises 
because the model removes time-invariant characteristics by 
demeaning the data, which can lead to biased estimates if the 
panel is not sufficiently large.

Reduction of omitted variable bias

The FE model reduces the risk of omitted variable bias by 
controlling for unobserved, time-invariant factors that 
could correlate with both the independent variables (CAP 
interventions) and the dependent variable (productivity).

Loss of degrees of freedom

Including fixed effects for each entity reduces the degrees 
of freedom, which can be particularly problematic in small 
samples. This can lead to less precise estimates and wider 
confidence intervals.

Handling endogeneity

FE models can address endogeneity issues by including entity-
specific effects, which is crucial when policy measures are not 
randomly assigned but are influenced by the characteristics of 
the entities themselves.

Endogeneity concerns

Endogeneity can arise if the CAP interventions are correlated 
with unobserved factors that also affect productivity. For 
example, policy measures might be implemented in response 
to changes in productivity, leading to reverse causality. 
Addressing endogeneity often requires instrumental variable 
techniques, which can be challenging to implement.

Limited external validity

The results of a FE model are based on within-entity variations 
and may not generalise well to other contexts. This limitation in 
external validity means that the findings might not be applicable 
to entities that do not exhibit similar within-entity changes.

Complexity in interpretation

Interpreting the results of an FE model requires careful 
consideration of the within-entity variations. The coefficients 
represent the average effect of changes in the independent 
variables within the same entity over time, net of any time-
invariant characteristics. This can be complex and may require 
additional explanation to policymakers.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)
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6.5. Details on dynamic panel
Dynamic panel data (DPD) is also a correlation model that, in 
contrast with OLS and FE models, explicitly addresses the dynamic 
aspects. DPD models are particularly effective for estimating the 
impact of the CAP on productivity in agricultural economies. These 
models account for the dynamic nature of agricultural production 
processes, control for unobserved heterogeneity, and address 
endogeneity issues. The SYS-GMM estimator is commonly used in 
this context due to its ability to handle these complexities.

6.5.1. Technical explanation

The general form of a dynamic panel data model can be represented 
as:

yit = ρyit−1 + βXit + αi + γt + ϵit

Where:

 › yit is the dependent variable (e.g. productivity) for unit i at time t

 › yit-1 is the lagged dependent variable

 › Xit is a vector of explanatory variables (e.g. CAP subsidies, farm 
characteristics)

 › αi represents unobserved individual effects

 › γt represents time effects

 › ϵit is the error term

The SYS-GMM estimator addresses endogeneity by using lagged 
values of the dependent variable and other endogenous variables 
as instruments (see also Annex 1).

Methodological steps for implementing the dynamic 
panel data model

Define the objective and select units

 › Clearly define the objective of the study, which is to estimate the 
impact of CAP on productivity.

 › Select the units of analysis, such as farms from the FADN 
database.

Select covariates and collect data

 › Identify and collect data on covariates that influence both the 
likelihood of receiving CAP subsidies and productivity outcomes. 
Common data sources include FADN individual farm data sets, 
national statistical agencies and other relevant databases.

Estimation

 › Use the SYS-GMM estimator to estimate the relationship between 
productivity and CAP measure(s).

Assess model quality

 › Evaluate the quality of the model by checking specification tests 
for the SYS-GMM model.

 › Perform tests for autocorrelation i.e. the Sargan test for the 
suitability of the instruments and Wald tests for the specification 
of the model.

Perform sensitivity analysis

 › Conduct a sensitivity analysis to assess how robust the estimated 
treatment effects are to potential hidden biases.

Interpret results

 › Interpret the results of the quantitative analyses and their 
implications in policy terms. This includes understanding the 
impact of CAP subsidies on productivity and identifying potential 
areas for policy improvement.

6.5.2. Estimation

Software Implementation: Implement the model using statistical 
software such as R or Stata. These platforms offer packages and 
functions specifically designed for dynamic panels (e.g. ‘plm’ in R, 
‘xtabond2’ in Stata).
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6.5.3. Advantages and disadvantages

Table 18. Pros and cons of DPD

Pros Cons

Addresses endogeneity

The dynamic panel system GMM effectively handles 
endogeneity issues by using lagged values of the variables 
as instruments, which is crucial when policy measures 
and productivity may influence each other.

Complexity

The implementation of SYS-GMM is complex and requires 
a careful specification of the model, including the selection 
of appropriate instruments and lag lengths.

Controls for unobserved heterogeneity

This method accounts for unobserved individual effects that 
could make the results biased, ensuring more reliable estimates.

Instrument proliferation

There is a risk of instrument proliferation, which can overfit 
the model and lead to biased results. This requires a careful 
management of the number of instruments used.

Dynamic relationships

It captures the dynamic nature of the relationship between 
productivity and CAP interventions, considering how past values 
influence current outcomes.

Assumption sensitivity

The validity of the results in the SYS-GMM dynamic panel 
estimator hinges on two crucial assumptions: the absence 
of second-order serial correlation and the validity of the 
chosen instruments. To ensure the robustness of the findings, 
these assumptions must be rigorously tested.

The robustness of the findings depends on the careful selection 
and validation of instrumental variables, as well as the thorough 
testing of the underlying assumptions. A detailed description 
of the instruments used may also be helpful for replication.

Efficient estimation

By combining level and differenced equations, SYS-GMM 
provides more efficient and consistent estimates compared 
to the other econometric tools indicated in these guidelines.

Data requirements

SYS-GMM requires a large panel dataset with sufficient time 
periods and cross-sectional units to provide reliable estimates, 
which may not always be available.

Robustness to measurement errors

The method is robust for the measurement of errors 
in the explanatory variables, which is often a concern 
in agricultural data.

Interpretation challenges

The results can be difficult to interpret, especially when dealing 
with multiple lags and complex dynamic relationships.

Source: EU CAP Network supported by the European Evaluation Helpdesk for the CAP (2025)
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